Exotics at ATLAS

Farida Fassi (IFIC-Valencia)

On behalf of the ATLAS collaboration

QFTHEP Symposium, St. Petersburg, 23th-30th June, 2013

New Physics motivation...

- Higgs-like discovery particle is the Great achievement of 21th century science
 - Fits even better with the Standard Model (SM)
 - All SM particles observed !!
- However several open questions still unsolved by SM:
 - Hierarchy problem, higher symmetries, dark matter/energy,
 - There could be either SUSY, reviewed by Evgeniy Khramov (JINR Dubna) or Exotics phenomena, target of this talk

New Physics motivation...

- Investigating whether the answers may come from exotic models
- Search for Beyond-SM resonances on smooth SM backgrounds

Exotics on ATLAS:

- 60 papers published on 7 TeV data
- 13 papers published/submitted on 8TeV data
- Focus on selected recent ATLAS results
- Search for heavy resonances in:
 - Dilepton events
 - ttbar events
 - Heavy quarks events (W´(Z´)→tb)
 - Diboson events
- All limits are quoted at the 95% CL

Typical Search strategy

- Focus on observables such as invariant mass, p_T or E_T
- Search for deviations from known background (BG)
 - Search for bump (resonant phenomena)
 - Search for excess in tail (non-resonant phenomena)

Main steps for Limit setting:

- Compute theoretical prediction
- Estimate acceptance, efficiency
- and luminosity and their uncertainties

Pseudo-experiments

- generate BG only pseudo experiments (PE)
- for each PE estimate the consistency between
- pseudo-data and signal+background hypothesis and get 95%CL limit on signal cross-section
- for all PE calculate the median, the 1 sigma RMS and the 2 sigma RMS

plot the σ (Data)

- compute observed limits
- compute expected limits

Dilepton resonances

ATLAS-CONF-2013-017

- Select events with two isolated leptons:
 - Clean signature: e+e- or µ⁺µ⁻
 - But present significant experimental challenges
 - understand detector Performance
 - confidence in alignment, simulation
- Dominant Background: Drell-Yan
 - require high mll
- MC estimation: Z/γ*, ttbar , diboson
 - data-driven estimation: multijet, W+jets

P(μ1)_T =653 GeV, = P(μ2)_T 646 GeV, mμμ =1844 GeV

 Focus on invariant mass spectrum

The pair with the highest p_T scalar sum is selected; Sum of backgrounds is normalized to data in 80-110 GeV region

Dilepton resonances: Results

ATLAS-CONF-2013-017

- Results are interpreted using the following Benchmark models:
 - Sequential SM: assume Z' with same couplings as SM Z
 - Randall-Sundrum KK graviton
- Bayesian approach used to set upper limits on o times BR

95 % C.L Expected and observed mass limits with 20 fb⁻¹ at 8 TeV

model	Z' _{SSM}	Z'_{ψ}	Z' _N	Z'_{η}	Ζl	Z's	Z'_{χ}	$G^* (k/\bar{M}_{\rm Pl} = 0.1)$
Observed mass limit [TeV]	2.86	2.38	2.39	2.44	2.42	2.47	2.54	2.47
Expected mass limit [TeV]	2.85	2.37	2.38	2.43	2.40	2.46	2.53	2.47

ttbar resonances

ATLAS-CONF-2013-052

- With the increase of energy and luminosity at the LHC, decay of heavy resonances associated with new physics is in the multi-TeV mass range
- Result in highly boosted very massive objects such as Top
 - Decay products of Boosted Tops collimated in direction of pT
 - Separation can be described according to ΔR ~ m/pT

Standard reconstruction methods are no longer sufficient for boosted top quarks

Many new techniques are developed to reconstruct and identify boosted tops

- Jet substructure → fatjet
- Less-isolated leptons

ttbar resonances

ATLAS-CONF-2013-052

Benchmark models to quantify sensitivity:

- Topcolour assisted technicolour leptophobic Z'
 - Narrow resonance (width ~1% of the mass, Spin 1)

Randall-Sundrum Kaluza-Klein

gluons, g_{KK}

- Broad resonances (width ~10-15% of the mass, Spin 1)
- Present a challenge for detector resolution

Analysis strategy

- Top quark signature is difficult to reconstruct efficiently → Many objects
 - Adapt the event selection and reconstruction to the final configuration
 - Event selections:
 - Resolved: standard top reconstruction with narrow jets
 - Boosted: using large-cone "fatjet to reconstruct the hadronic top"

Event reconstruction:

- Combined limit of boosted and resolved selection:
 - Resolved selection mainly relevant at low mtt
 - Boosted selection relevant at high mtt

ttbar resonances: Results

ATLAS-CONF-2013-052

- Focus on invariant mass spectrum, m_{tt}
 - No significant deviations from the Standard Model

 Expected and observed upper cross section limits times ttbar branching ratio (95 % C.L.)

Exlusion @95% CL limit (Bayesian)
0.5 TeV < m_{Z'} <1.74 TeV
0.5 TeV < mg_{kk}< 2.07 TeV

Heavy quarks resonances

ATLAS-CONF-2013-050

- Many beyond-SM predict heavy gauge bosons W'(Z')
 - GUT-inspired theories,
 - Kaluza-Klein excitations of gauge bosons

New heavy bosons W´ has strong coupling to third generation

- Search for heavy resonances decaying to tb
 - Select events with 2 b-jets, high invariant mass of tb system
- Boosted Decision Tree (BDT) for discrimination of signal to background
 - Main discriminants: m_{tb}, p_T(top)
 - separation between lepton and b-jet

BDT output for data, signal and background in signal region with 2 b-jets

Heavy quarks resonances: Results

ATLAS-CONF-2013-050

- No data excess over the expected SM background is observed in BDT output
- Set limits on W' with SM couplings (effective model)

Diboson resonances

- Benchmark model of heavy resonances decaying to pairs of electroweak gauge bosons
 - W' in the Extended Gauge Model (EGM)
 - Technimesons (LSTC)

- WZ-> lvll signal selection (l=e,m)
 - exactly three leptons to reconstruct
 - a pair of W(l±v) and Z(l+l-)
 - W mass constraint for solving the pv
- Backgrounds: WZ, ZZ, Z+jets, ttbar, Zy
 - data-driven estimation for Z+jets and ttbar
- Non-resonant WZ background suppression
 - WZ control region: $\Delta y(W,Z) < 1.8$ and $\Delta \phi(W,Z) > 2.6$
 - Z+jet control region: ETmiss < 25 GeV, mTW < 25 GeV

Diboson resonances: Results

ATLAS-CONF-2013-015

no significant excess observed

• 95% C.L. limits on $\sigma \times B(W \rightarrow WZ)$, and exclusion limits on $(\pi_{T_{r}} \rho_{T})$ mass plane

Low scale TC (assuming W'-like kinematics)

$ma_T = 1.1m\rho_T$	>	0.92	TeV
	_		

ma_T >>mp_T > 0.92 TeV

Exotics searches at a glance....

	Large ED (ADD) : monojet + $E_{T miss}$	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]	4.37 TeV M _D (δ=2)	
	Large ED (ADD) : monophoton + ET miss	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M _D (δ=2)	471 40
JS	Large ED (ADD) : diphoton & dilepton, may (L=4.7 fb ⁻¹ , 7 TeV [1211.1150]	4.18 TeV M _S (HLZ δ=	3, NLO) AILAS
0	UED : diphoton + $E_{T miss}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.40 TeV Compact. scale R ⁻¹	Preliminary
1S	S ¹ /Z, ED : dilepton, m	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	4.71 TeV M _{KK} ~ R ⁻¹	
lel	RS1 : dilepton, m	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.47 TeV Graviton mass (k/A	$f_{\rm Pl} = 0.1$)
	RS1: WW resonance, m _{T bib}	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Graviton mass (k/Mpi = 0.1)	ſ.
e e	Bulk RS : ZZ resonance, m	L=7.2 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-150]	850 GeV Graviton mass $(k/M_{\rm Pl} = 1.0)$	$Ldt = (1 - 20) \text{ fb}^{-1}$
tr.	RS $g_{m} \rightarrow t\bar{t}$ (BR=0.925) : $t\bar{t} \rightarrow l+jets, m_{m}$	L=4.7 fb ⁻¹ , 7 TeV [1305.2756]	2.07 TeV g	
Û	ADD BH $(M_{TH} / M_D = 3)$: SS dimuon, $N_{ch, part}$	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV M _D (δ=6)	s = 7, 8 lev
	ADD BH $(M_{TH}/M_{D}=3)$: leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV M _D (δ=6)	
	Quantum black hole : dijet, F (m)	L=4.7 fb ⁻¹ , 7 TeV [1210.1718]	4.11 TeV M _D (δ=6)	
	qqqq contact interaction : $\chi(m_{\perp})$	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	7.6 TeV Λ	
õ	qqll CI : ee & μμ, mື	L=5.0 fb ⁻¹ , 7 TeV [1211.1150]	13.9	TeV Λ (constructive int.)
-	uutt CI : SS dilepton + jets + $E_{T miss}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	3.3 TeV Λ (C=1)	
	Z' (SSM) : m _{ee/uu}	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.86 TeV Z' mass	
	Z' (SSM) : m _{er}	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass	
2	Z' (leptophobic topcolor) : $t\bar{t} \rightarrow l+jets, m$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052]	1.8 TeV Z' mass	
>	W' (SSM) : m _{Te/u}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV W' mass	
	W' (\rightarrow tq, g =1) : m_{tq}	L=4.7 fb ⁻¹ , 7 TeV [1209.6593]	430 GeV W' mass	
	$W'_{R} (\rightarrow tb, LRSM) : m_{L}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050]	1.84 TeV W' mass	
~.	Scalar LQ pair (β=1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1 st gen. LQ mass	
O,	Scalar LQ pair (β=1) : kin. vars. in μμjj, μvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 Gev 2 nd gen. LQ mass	
	Scalar LQ pair (β=1) : kin. vars. in ττjj, τvjj	L=4.7 fb ⁻¹ , 7 TeV [1303.0526]	534 GeV 3rd gen. LQ mass	
60	4 th generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV ť mass	
≥₹ 4	th generation : b'b' \rightarrow SS dilepton + jets + $E_{T \text{ miss}}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	720 GeV b' mass	
Ne	Vector-like quark : TT→ Ht+X	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-018]	790 Gev T mass (isospin doublet)	
- 6	Vector-like quark : CC, mixa	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass (charge -1/3, coupli	ng $\kappa_{a0} = v/m_0$)
	Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV q* mass	- 1- 4
ii cit	Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.84 TeV q* mass	
ц, jē	Excited b quark : W-t resonance, m	L=4.7 fb ⁻¹ , 7 TeV [1301.1583]	870 Gev b* mass (left-handed coupling)	
	Excited leptons : I-γ resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV I* mass (Λ = m(I*))	
	Techni-hadrons (LSTC) : dilepton, mee/uu	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV $\rho_{\rm T}/\omega_{\rm T}$ mass $(m(\rho_{\rm T}/\omega_{\rm T}) - m(\pi_{\rm T}) = M_{\rm eff})$	
Te	echni-hadrons (LSTC) : WZ resonance (IvII), m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-015]	920 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T}) + m_{W}, m(a)$	$(p_{T}) = 1.1 m(\rho_{T})$
L.	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mass (m(W p) = 2 TeV)	
🖉 Heav	y lepton N [±] (type III seesaw) : Z-I resonance, m ₂₁	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-019]	N [±] mass (V _a = 0.055, V _a = 0.063, V _t = 0)	
1	$H_{L}^{\pm\pm}$ (DY prod., BR($H_{L}^{\pm\pm} \rightarrow II$)=1) : SS ee ($\mu\mu$), $m_{L}^{\pm\pm}$	L=4.7 fb ⁻¹ , 7 TeV [1210.5070]	409 GeV H ^{±±} _L mass (limit at 398 GeV for μμ)	
0	Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV Scalar resonance mass	
Multi-cha	arged particles (DY prod.) : highly ionizing tracks	L=4.4 fb ⁻¹ , 7 TeV [1301.5272]	490 GeV mass (q = 4e)	
Magne	tic monopoles (DY prod.) : highly ionizing tracks	L=2.0 fb ⁻¹ , 7 TeV [1207.6411]	862 GeV mass	
	Evotice Deculte'	10-1	4 4	0

htt

Summary & outlook

- No hints of new physics yet!!
- Results using the full Run 1 dataset are Starting to appear
- Surprise can be around the corner !!

Exiting perspective

 LHC physics reach at TeV mass scale will be greatly extended by the increased beam energy and intensity expected in Run 2

ATLAS has been doing great...

Very competitive analyses in Exotica searches

Data Taking and Data Quality

ATLAS Detector Status

Subdetector	Number of Channels	Appro	oximate Operational I	Fraction
Pixels	80 M		95.0%	
SCT Silicon Strips	6.3 M		99.3%	
TRT Transition Radiation Tracker	350 k		97.5%	
LAr EM Calorimeter	170 k		99.9%	
Tile calorimeter	9800		98.3%	
Hadronic endcap LAr calorimeter	5600		99.6%	
Forward LAr calorimeter	3500		99.8%	
LVL1 Calo trigger	7160		100%	
LVL1 Muon RPC trigger	370 k		100%	
LVL1 Muon TGC trigger	320 k		100%	
MDT Muon Drift Tubes	350 k		99.7%	
CSC Cathode Strip Chambers	31 k		96.0%	
RPC Barrel Muon Chambers	370 k		97.1%	
TGC Endcap Muon Chambers	320 k		98.2%	

Excellent performance of ATLAS

2012 data quality after reprocessing