Effective Lagrangian analysis of observed Higgs-like boson

V. Bunichev

Mosow State University

In collaboration with E. Boos, M. Dubinin, Y. Kurihara

Higgs-like Boson

M = 125 GeV

Production of Higgs-boson:

Gluon fusion

Vector boson fusion

Assotiated production

Top quark fusion

Higgs Signals:

WW

 $pp \longrightarrow Hij \longrightarrow W^+W^-ij \longrightarrow 2l, 2\nu, jj$

 $gg \longrightarrow H \longrightarrow W^+W^- \longrightarrow 2l, 2\nu$

 $qq \longrightarrow H \longrightarrow \gamma\gamma$ $pp \longrightarrow t\bar{t}H \longrightarrow t\bar{t}\gamma\gamma$ $pp \longrightarrow WH \setminus ZH \longrightarrow W\gamma\gamma \setminus Z\gamma\gamma$

YY

 $pp \longrightarrow WH \setminus ZH \longrightarrow Wb\overline{b} \setminus Zb\overline{b}$

ZZ

 $gg \longrightarrow H \longrightarrow ZZ \longrightarrow 4l$ $pp \longrightarrow Hij \longrightarrow ZZjj \longrightarrow 4l, jj$

ττ

b b

γγ(vbf)

 $pp \longrightarrow Hij \longrightarrow \gamma\gamma jj$

$gg \longrightarrow H \longrightarrow \tau\tau$ $pp \longrightarrow Hjj \longrightarrow \gamma\gamma jj$ $pp \longrightarrow t\overline{t}H \longrightarrow t\overline{t}\tau\tau$ $pp \longrightarrow WH \setminus ZH \longrightarrow W\tau\tau \setminus Z\tau\tau$

Signal strength

Available experimental data provides the signal strength:

$$\mu_i = \frac{\left[\sum_j \sigma_{j \to h} Br(h \to i)\right]_{obs}}{\left[\sum_j \sigma_{j \to h} Br(h \to i)\right]_{SM}}$$

where i is a number of Higgs boson decay channel and j is the number of Higgs production process for a given final state.

Best fit value of a signal strength can be expressed using the observed number of signal events N_{obs} , the number of background events N_{backgr} and the number of signal events calculated in the SM $N_{signal,i}$

$$\hat{\mu}_i = \frac{N_{obs,i} - N_{backgr,i}}{N_{signal,i}^{SM}}$$

V. Bunichev, SINP MSU

Global χ^2 defined as:

$$\chi^{2}(\mu_{i}) = \sum_{i}^{N_{ch}} \frac{(\mu_{i} - \hat{\mu}_{i})^{2}}{\sigma_{i}^{2}}$$

for the number of production channels N_{ch}. Theoretical predictions for $\sigma_{j \rightarrow h}$ and related errors can be found on the LHC Higgs Cross Sections WG webpage Minimization of $\chi 2 \rightarrow \chi 2$ gives us the 1 σ , 2 σ and 3 σ regions $\chi 2 = \chi 2_{min} + \Delta \chi 2$ where $\Delta \chi 2$ is defined by cumulative distribution function.

V. Bunichev, SINP MSU

Table calculations in CompHEP

V. Bunichev, SINP MSU

X^2 analysis and contour plots in CompHEP

QFTHEP 2013

V. Bunichev, SINP MSU

X^2 analysis and contour plots in CompHEP

Fit to LHC Higgs like data inclusive

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

V. Bunichev, SINP MSU

-2

QFTHEP 2013

2

а

Comparison of CompHEP calculations with well known results

Partial x2 fit in the (a, c) plane

Global x2 fit in the (a, c) plane (based of 2012 data)

JHEP 1205, 097 (2012)

Global χ2 fit in the (a, c) plane (based of 2013 data)

Global $\chi 2$ fits in the (a, c) plane. (left) - calculated without VBF diagrams in the $\gamma\gamma$, WW and ZZ channels, (right) - calculated with VBF diagrams in the $\gamma\gamma$, W W and ZZ channels based on preliminary 2013 data

Complete set of gauge invariant dim 6 operators:

W. Buchmuller, D. Wyler, Effective lagrangian analysis of new interactins and flavour conservation, Nucl.Phys. B268 (1986) 621

• scalar-gauge boson sector

$$O_{\Phi G} = \frac{1}{2} (\Phi^{\dagger} \Phi - \frac{v^2}{2}) G^a_{\mu\nu} G^{a\mu\nu}$$
$$O_{\Phi B} = \frac{1}{2} (\Phi^{\dagger} \Phi - \frac{v^2}{2}) B_{\mu\nu} B^{\mu\nu}$$
$$O_{\Phi W} = \frac{1}{2} (\Phi^{\dagger} \Phi - \frac{v^2}{2}) W^i_{\mu\nu} W^{i\mu\nu}$$
$$O^{(1)}_{\Phi} = (\Phi^{\dagger} \Phi - \frac{v^2}{2}) D_{\mu} \Phi^{\dagger} D^{\mu} \Phi$$

$$O_{\Phi G} = \frac{1}{2} (\Phi^{\dagger} \Phi - \frac{v^2}{2}) G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$
$$O_{\Phi B} = \frac{1}{2} (\Phi^{\dagger} \Phi - \frac{v^2}{2}) B_{\mu\nu} \tilde{B}^{\mu\nu}$$
$$O_{\Phi W} = \frac{1}{2} (\Phi^{\dagger} \Phi - \frac{v^2}{2}) W^i_{\mu\nu} \tilde{W}^{i\mu\nu}$$

• scalar-fermion sector

$$O_{t\Phi} = (\Phi^{\dagger}\Phi - \frac{v^2}{2})(\bar{Q_L}\Phi^c t_R)$$

$$O_{b\Phi} = (\Phi^{\dagger}\Phi - \frac{v^2}{2})(\bar{Q_L}\Phi b_R)$$

$$O_{\tau\Phi} = (\Phi^{\dagger}\Phi - \frac{v^2}{2})(\bar{L_L}\Phi\tau_R) \quad \text{where dual tensor } \tilde{F}_{\mu\nu} = \epsilon_{\mu\nu\gamma\delta}F_{\gamma\delta}.$$

We avoid mixing in the gauge field kinetic terms by subtraction of $v^2/2$ For the same reason the a operator $O_{WB} = (\Phi^{\dagger} \tau^a \Phi) W^a_{\mu\nu} B^{\mu\nu}$ is excluded. V. Bunichev, SINP MSU QFTHEP 2013

Dim 6 operators and corresponding vertices

Effective operators	Triple vertices	Feynman rules
$O_{t\Phi} = (\Phi^{\dagger}\Phi - \frac{v^2}{2})(-\lambda_t)(\bar{Q}_L\Phi^c t_R)$ $O_{b\Phi} = (\Phi^{\dagger}\Phi - \frac{v^2}{2})(-\lambda_b)(\bar{Q}_L\Phi b_R)$ $O_{\tau\Phi} = (\Phi^{\dagger}\Phi - \frac{v^2}{2})(-\lambda_{\tau})(\bar{L}_L\Phi\tau_R)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-M_t \cdot \frac{v}{\Lambda^2} \cdot C_{t\Phi} -M_b \cdot \frac{v}{\Lambda^2} \cdot C_{b\Phi} -M_\tau \cdot \frac{v}{\Lambda^2} \cdot C_{\tau\Phi}$
$O_{\Phi G} = \frac{1}{2} (\Phi^{\dagger} \Phi - \frac{v^2}{2}) G^a_{\mu\nu} G^{a\mu\nu}$	G_{μ} G_{ν} H	$-2 \cdot \frac{v}{\Lambda^2} \cdot C_{\Phi G} \cdot \left(g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu}\right)$
$O_{\Phi B} = \frac{1}{2} \left(\Phi^{\dagger} \Phi - \frac{v^2}{2} \right) B_{\mu\nu} B^{\mu\nu}$	$\begin{array}{cccc} A_{\mu} & A_{\nu} & H \\ A_{\mu} & Z_{\nu} & H \\ Z_{\mu} & Z_{\nu} & H \end{array}$	$\begin{vmatrix} -2 \cdot c_W^2 \cdot \frac{v}{\Lambda^2} \cdot C_{\Phi B} \cdot (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu}) \\ +2 \cdot c_W \cdot s_W \cdot \frac{v}{\Lambda^2} \cdot C_{\Phi B} \cdot (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu}) \\ -2 \cdot s_W^2 \cdot \frac{v}{\Lambda^2} \cdot C_{\Phi B} \cdot (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu}) \end{vmatrix}$
$O_{\Phi W} = \frac{1}{2} (\Phi^{\dagger} \Phi - \frac{v^2}{2}) W^i_{\mu\nu} W^{i\mu\nu}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} -2 \cdot s_W^2 \cdot \frac{v}{\Lambda^2} \cdot C_{\Phi W} \cdot (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu}) \\ -2 \cdot c_W \cdot s_W \cdot \frac{v}{\Lambda^2} \cdot C_{\Phi W} \cdot (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu}) \\ -2 \cdot c_W^2 \cdot \frac{v}{\Lambda^2} \cdot C_{\Phi W} \cdot (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu}) \\ -2 \cdot \frac{v}{\Lambda^2} \cdot C_{\Phi W} \cdot (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu}) \end{vmatrix}$
$O_{\Phi}^{(1)} = (\Phi^{\dagger}\Phi - \frac{v^2}{2})D_{\mu}\Phi^{\dagger}D^{\mu}\Phi$	$ \begin{array}{ccc} W^+_\mu \ W^\nu \ H \\ Z_\mu \ Z_\nu \ H \end{array} $	$ \begin{vmatrix} M_W^2 \cdot \frac{v}{\Lambda^2} \cdot C_{\Phi}^{(1)} \cdot g^{\mu\nu} \\ M_Z^2 \cdot \frac{v}{\Lambda^2} \cdot C_{\Phi}^{(1)} \cdot g^{\mu\nu} \end{vmatrix} $

V. Bunichev, SINP MSU

Combining contributions from different operators we get a complete set of Feynman rules

Triple vertices	Feynman rules
\overline{t} t H	$\left \begin{array}{c} -\frac{M_t}{v} \cdot \left[1 + C_{t\Phi} \cdot \frac{v^2}{\Lambda^2} \right] \end{array} \right $
$ar{b}$ b H	$\left -\frac{M_b}{v} \cdot \left[1 + C_{b\Phi} \cdot \frac{v^2}{\Lambda^2} \right] \right $
$\bar{\tau}$ τ H	$-\frac{M_{\tau}}{v} \cdot \left[1 + C_{\tau\Phi} \cdot \frac{v^2}{\Lambda^2}\right]$
G_{μ} G_{ν} H	$-2 \cdot C_{\Phi G} \cdot \frac{v}{\Lambda^2} (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu})$
$A_{\mu} A_{\nu} H$	$-2 \cdot (c_W^2 \cdot C_{\Phi B} + s_W^2 \cdot C_{\Phi W}) \cdot \frac{v}{\Lambda^2} (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu})$
$A_{\mu} Z_{\nu} H$	$+2 \cdot c_W \cdot s_W \cdot (C_{\Phi B} - C_{\Phi W}) \cdot \frac{v}{\Lambda^2} (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu})$
Z_{μ} Z_{ν} H	$ + \frac{2}{v} \cdot \left[M_Z^2 \cdot (1 + \frac{v^2}{2\Lambda^2} \cdot C_{\Phi}^{(1)}) \cdot g^{\mu\nu} - (s_W^2 \cdot C_{\Phi B} + c_W^2 \cdot C_{\Phi W}) \cdot \frac{v^2}{\Lambda^2} (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu}) \right] $
$W^+{}_\mu W^-{}_\nu H$	$ + \frac{2}{v} \cdot \left[M_W^2 \cdot \left(1 + \frac{v^2}{2\Lambda^2} \cdot C_{\Phi}^{(1)} \right) \cdot g^{\mu\nu} - C_{\Phi W} \cdot \frac{v^2}{\Lambda^2} (g^{\mu\nu} p_1 p_2 - p_1^{\nu} p_2^{\mu}) \right] $

The Feynman rules inserted into the CompHEP and are used for calculation the cross sections for Higgs production processes

Conclusion and results:

- We choose the basis in space of dim 6 operators.
- We significantly expanded functions of the CompHEP package for table calculations, statistical analysis and graphical representations of results.
- For validation of our machinary we compare our calculations with well known results.
- We start calculation in frame of our basis (in progress)