Non-perturbative renormalization scheme in application to chiral perturbation theory in the nucleon sector

N.A. Tsirova

Samara State University, Samara, Russia

J.-F. Mathiot

Laboratoire de Physique Corpusculaire, Aubiere, France

QFTHEP 2011

Outline

- Introduction: LFχEFT
- Covariant Light-Front Dynamics
- Fock sector dependent renormalization scheme
- Taylor-Lagrange regularization scheme
- Application to ChPT
- Perspectives

Introduction

To understand the nucleon structure at low energy from a chiral effective Lagrangian we need an appropriate calculational scheme:

- relativistic
- non-perturbative
- well-controlled approximation scheme

We present $LF\chi EFT$ – Light-Front Chiral Effective Field Theory

Light Front Chiral Effective Field Theory

Key points:

• CLFD

explicitly covariant formulation of light-front dynamics [J.Carbonell et al. Phys.Rep. 300 (1998) 215]

• FSDR

Fock sector dependent renormalization scheme [V. Karmanov et al. PRD 77 (2008) 085028]

• TLRS

Taylor-Lagrange regularization scheme [P.Grangé et al. Phys. Rev. D 82 (2010) 025012]

Already done

CLFD + FSDR + Pauli-Villars

- Yukawa N=2, N=3
- QED N=2 [V. Karmanov et al. PRD 77 (2008) 085028]
- ChPT N=2

CLFD + FSDR + TLRS

• Yukawa N=2

[P.Grangé et al. Phys.Rev.D 80 (2009) 105012]

ChPT is the first "realistic" test of this approach

Covariant Light-Front Dynamics

Standard version of LFD

Covariant formulation

Rotational invariance is broken!

Arbitrary position of the LF plane

$$\omega \cdot x = 0$$
$$\omega^2 = 0$$

[J.Carbonell et al. Phys.Rep. 300 (1998) 215]

The state vector construction

Fock decomposition:

$$\begin{split} \phi_{\omega}^{J\sigma}(p) &\equiv |1\rangle + |2\rangle + \dots + |n\rangle + \dots \\ & \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \\ \phi_1 \quad \phi_2 \qquad \phi_n \longrightarrow \begin{array}{c} n \text{-body light-front} \\ \text{wave functions} \\ \end{split}$$

Truncation of the Fock decomposition: $n \leq N$

- N- the maximal number of Fock sectors under consideration
- n number of constituents in a given Fock sector

Upper index $\phi_n^{(N)}$: *n*-body light-front wave functions depend on the Fock space truncation

For example: $\phi_2^{(2)} \neq \phi_2^{(3)}$

Vertex functions

Wave functions $\leftarrow \rightarrow$ vertex functions:

$$\bar{u}(k_1)\Gamma_n^{(N)}u(p) = (s_n - M^2)\phi_n^{(N)}$$
$$s_n = (k_1 + \dots + k_n)^2$$

Graphical representation:

Vertex function for a physical fermion made of a constituent fermion coupled to bosons

Vertex functions

Vertex functions decomposition :

- · invariant amplitudes constructed from the particle 4-momenta
- spin structures

Yukawa model :

$$\bar{u}(k_{1})\Gamma_{1}u(p) = (m^{2} - M^{2})a_{1}\bar{u}(k_{1})u(p)$$

$$\bar{u}(k_{1})\Gamma_{2}u(p) = \bar{u}(k_{1})\left[b_{1} + b_{2}\frac{M}{\omega \cdot p}\right]u(p)$$

$$\bar{u}(k_{1})\Gamma_{3}u(p) = \bar{u}(k_{1})\left[c_{1} + c_{2}\frac{M}{\omega \cdot p}\phi\right]$$

$$+ C_{ps}\left(c_{3} + c_{4}\frac{M}{\omega \cdot p}\phi\right)\gamma_{5}u(p)$$

$$C_{ps} = \frac{1}{M^{2}\omega \cdot p}\epsilon^{\mu\nu\rho\lambda}k_{2\mu}k_{3\nu}p_{\rho}\omega_{\lambda}$$

a, b, c are scalar functions depending on dynamics

Renormalization scheme

Contribution to the physical fermion propagator

 $\delta m \to \delta m_2$

The general case: dependence on the Fock sector

(maximal number of particles in which the fermion line can fluctuate)

The same strategy for bare coupling constant g_0

[V. Karmanov et al. PRD 77 (2008) 085028]

Renormalization scheme

Iterative scheme: from sector to sector

Regularization

Infinite regularization schemes:

- Cut-off
- Dimensional regularization
- Pauli-Villars regularization scheme

All these schemes deal with infinitely large contributions

We use TLRS: systematic finite regularization scheme

Amplitudes depend on arbitrary finite scale

Basics of TLRS

$$\mathcal{A} = \int T(x) \mathrm{d}x \to \int T(x) f(x) \mathrm{d}x$$

f(x) – super regular test function

- f(x) = 1 everywhere it is defined
- vanishes with all derivatives at boundaries

Support : $f(x \ge H) = 0$ Ordinary cut-off : $H=H_0$

We go beyond this ordinary cut-off

Basics of TLRS

$$\mathcal{A} = \int T(x) \mathrm{d}x \to \int T(x) f(x) \mathrm{d}x$$

Running boundary condition:

$$H(x) = \eta x g_{\alpha}(x), \qquad \eta > 1, \quad 0 < \alpha < 1$$

Lagrange formula:

$$f(ax) = -\int_{a}^{\infty} \mathrm{d}t \,\partial_t f(xt)$$

-

When we put $\alpha \rightarrow l^-$:

- $g_a(x) \rightarrow l$
- $H(x_{max}) \rightarrow \infty$
- $f(x) \rightarrow l$ everywhere
- integration limit over t: $x t \leq H(x)$

$$t \leq \eta$$

Basics of TLRS : how it works

$$\mathcal{A} = \int_{0}^{\infty} \frac{\mathrm{d}x}{x+a} \to \int_{0}^{\infty} \frac{\mathrm{d}x}{x+a} f(x)$$

New variable y : x = ay

$$\mathcal{A} = \int_{0}^{\infty} \frac{\mathrm{d}y}{y+1} f(ay)$$

New variable
$$t: z = yt$$
 $\mathcal{A} = -\int_{0}^{\infty} dz \int_{a}^{\infty} dt \, \partial_t \, \frac{1}{z+t} f(z)$

Integration domain : $z = yt \le H(y)$ $t \le \eta$ $\mathcal{A} = \int_{0}^{\infty} \mathrm{d}z \left(\frac{1}{z+a} - \frac{1}{z+\eta} \right)$ – Pauli-Villars type subtraction

Final result : $\mathcal{A} = \ln \eta - \ln a$

 η is an arbitrary finite positive number

Application to Chiral Perturbation Theory *N=2*

Need of a non-perturbative framework to calculate bound state properties

easy with πNN coupling

to be generalized for $\pi\pi NN$ case

ChPT Lagrangian

• Lagrangian is formulated in terms of *u* fields

$$u = e^{i\frac{\vec{\tau}\cdot\vec{\pi}}{2F_0}}$$

 F_0 is the pion decay constant

• Expansion in a finite number of degrees of pion field

$$\mathcal{L} = \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \ldots + \mathcal{L}^{(N)} + \ldots$$

• *N*-body Fock space truncation: 2(N-1) pions

$$(N-1)$$
 bosons $\left| \begin{array}{c} & & \\$

ChPT Lagrangian

In our first study

$$\mathcal{L} = -\frac{g_A}{2F_0} \bar{\Psi} \gamma^{\mu} \gamma_5 \vec{\tau} \cdot \partial_{\mu} \vec{\pi} \Psi - \frac{1}{4F_0^2} \bar{\Psi} \vec{\tau} \cdot (\vec{\pi} \times \partial_{\mu} \vec{\pi}) \gamma^{\mu} \Psi$$

linear πNN interaction

contact $\pi\pi NN$ interaction

Self-energy calculation

Attach test functions corresponding to internal propagators

$$\Sigma \to \Sigma f\left(\frac{k_1^2}{\Lambda^2}\right) f\left(\frac{k_2^2}{\Lambda^2}\right)$$

Introduce a new variable t and apply the Lagrange formula

$$\Sigma = -\frac{3g_A^2 M}{32F_0^2 \pi^2} \int_0^\infty \mathrm{d}\mathbf{R}_{\perp}^2 \int_0^1 \mathrm{d}x \int_a^\infty \mathrm{d}t \partial_t \frac{\mu^2}{\mathbf{R}_{\perp}^2 + t^2 (x^2 M^2 + \mu^2 (1-x))} f\left(\right) f\left(\right)$$

Self-energy calculation

Proceed in the common way:

- consider running boundary condition
- put $\alpha \to l^-, f \to l$
- find integration limit $t \leq \eta$

The final result :

$$\Sigma = \frac{3g_A^2 M\mu^2}{32F_0^2 \pi^2} \ln \eta - \frac{3g_A^2 M\mu^2}{32F_0^2 \pi^2} \int_0^1 \mathrm{d}x \ln \frac{x^2 M^2 + \mu^2 (1-x)}{M^2}$$

Chiral limit

The nucleon mass correction from the self-energy contribution :

$$M = M_0 + \Sigma$$

The full self-energy :

$$\Sigma = \frac{3g_A^2 M \mu^2}{32F_0^2 \pi^2} \ln \eta + \frac{3g_A^2 \mu^2}{32F_0^2 \pi^2} \left(2M - \frac{\mu^2}{M} \ln \frac{\mu}{M} - \frac{\mu\sqrt{4M^2 - \mu^2}}{M} \arctan \frac{\sqrt{4M^2 - \mu^2}}{\mu} \right)$$

Non-analytic terms in the chiral limit :

$$\Sigma = \frac{3g_A^2}{32F_0^2} \left(-\frac{\mu^3}{\pi} - \frac{\mu^4 \ln \frac{\mu}{M}}{\pi^2 M} + \frac{\mu^5}{8\pi M^2} + \dots \right)$$

Scalar form factor

To calculate it we proceed in a common way:

- attach test function
- introduce new variable t
- apply the Lagrange formula

$$\sigma = -\frac{3g_A^2\mu^2 M}{32F_0^2\pi^2} \int d\mathbf{R}_{\perp}^2 dx \int_a^{\infty} dt \partial_t \frac{1}{\mathbf{R}_{\perp}^2 + t^2 \left(x^2 M^2 + \mu^2 (1-x)\right)} f[]f[] \longrightarrow \sim \Sigma$$

+
$$\frac{3g_A^2\mu^2 M}{32F_0^2\pi^2} \int d\mathbf{R}_{\perp}^2 dx \int_a^{\infty} dt \partial_t \frac{t^2\mu^2 (1-x)}{\left[\mathbf{R}_{\perp}^2 + t^2 \left(x^2 M^2 + \mu^2 (1-x)\right)\right]^2} f[]f[] \longrightarrow \text{ convergent integral}$$

The final result

$$\sigma = \frac{3g_A^2 M\mu^2}{32F_0^2 \pi^2} \ln \eta + \frac{3g_A^2 \mu^2}{32F_0 \pi^2} \left(2M - \frac{2\mu^2}{M} \ln \frac{\mu}{M} - \frac{2\mu(3M^2 - \mu^2)}{M\sqrt{4M^2 - \mu^2}} \arctan \frac{\sqrt{4M^2 - \mu^2}}{\mu} \right)$$

coincides with the Feynman – Hell-Mann theorem: $\sigma = \mu^2 \frac{\partial M}{\partial \mu^2}$

System of equations

In the two-body Fock space truncation

$$\bar{u}(p_1)\Gamma_1 u(p) = \bar{u}(p_1)(V_1 + V_2 + V_3 + V_4)u(p)$$

$$\bar{u}(k_1)\Gamma_2 u(p) = \bar{u}(k_1)(V_5 + V_6 + V_7 + V_8)u(p)$$

The term V_8 corresponds to the contact $\pi\pi NN$ interaction

Vertex functions representation

We choose the representation of vertex functions according to the vertex with an outgoing pion:

$$\bar{u}(k_{1})\Gamma_{1}u(p) = (m^{2} - M^{2})a_{1}\bar{u}(k_{1})u(p) ,$$

$$\bar{u}(k_{1})\Gamma_{2}u(p) = -i\bar{u}(k_{1})\left((\not{k}_{2} - \not{\omega}\tau)\gamma_{5}b_{1}(\mathbf{R}_{\perp}, x) + \gamma_{5}\frac{M\not{\omega}}{\omega \cdot p}b_{2}(\mathbf{R}_{\perp}, x)\right)u(p)$$

$$\tau = \frac{s - M^{2}}{2\omega \cdot p}$$

$$s = (k_{1} + k_{2})^{2}$$

With this representation b_1 and b_2 are just scalars

Solution

$$\begin{cases} b_1 = \frac{2Ma_1g_0}{1 - \frac{f_0}{F_0^2}Z} \\ b_2 = 0 \\ \delta m_0 = -\frac{3g_0b_1}{4a_1F_0^2}Z \end{cases}$$

 $Z \sim \Sigma$

Condition : $b_1 = g_A$

Bare coupling constant :
$$g_0 = \frac{g_A}{2Ma_1} \left(1 - \frac{f_0}{F_0^2} Z \right)$$

Mass counterterm :
$$\delta m = -\frac{3g_A^2 M}{2F_0^2} \left(1 - \frac{f_0}{F_0^2} Z\right) Z$$

Final results

$$\begin{cases} b_1 = g_A \\ b_2 = 0 \\ \delta m = -\frac{3g_A^2 M}{2F_0^2} \left(1 - \frac{f_0}{F_0^2} Z\right) Z \end{cases}$$

Without contact interaction :

$$f_0 = 0, \quad \delta m = -\frac{3g_A^2 M}{2F_0^2} Z = \Sigma$$

With contact $\pi\pi NN$ interaction :

$$\int f_0 = 1, \quad \delta m = -\frac{3g_A^2 M}{2F_0^2} \left(1 - \frac{1}{F_0^2} Z\right) Z$$

Nucleon mass corrections

First non-analytic contributions with and without contact interaction

$$\delta m = \frac{3g_A^2}{32F_0^2} \left(-\frac{\mu^3}{\pi} - \frac{\mu^4 \ln \frac{\mu}{M}}{\pi^2 M} + \frac{\mu^5}{8\pi M^2} \right)$$
$$\delta m = \frac{3g_A^2}{32F_0^2} \left(-\frac{\mu^3}{\pi} - \frac{\mu^4 \ln \frac{\mu}{M}}{\pi^2 M} + \frac{\mu^5}{8\pi M^2} - \frac{f_0}{4F_0^2} \frac{\mu^5}{\pi^3} \right)$$

The first contribution of the contact interaction is of order $\,{\cal O}(\mu^5)$

Contributions to the nucleon mass

Perspectives

Calculations for ChPT N=3 (1 nucleon and 2 pions)

