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Radiative corrections to different physical quantities needed for the comparison
of theoretical predictions with experimental data to be collected with the
CERN Large Hadron Collider (LHC) and, in future, with an International
Linear Collider (ILC) and other colliders are expressed in terms of complicated
Feynman integrals. In many cases, radiative corrections must be evaluated
analytically to achieve reliable accuracies in the calculations.

Researches working for the LHC collider presented famous ”wishlist“ – a list of
physical processes where next to leading order radiative corrections are needed.
Practically all these corrections require evaluation of radiative corrections with
5-, 6- and more external legs.

Characteristic features of these corrections:

• masses of many particles must be taken into account

• diagrams with many external lines, i.e.many kinematic variables must be
calculated

Therefore one should know how to calculate analytically and (or) numerically
with very high precision functions of many variables.
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To perform such calculations new mathematical approaches are needed!

Rather novel concepts for such calculations were proposed during last several
years:

• generalized recurrence relations

• Gröbner bases technique

• the method of dimensional recurrences

• functional equations

These methods and techniques are either recursive or strongly connected with
recurrence relations. They do not exploit traditional integral representations or
differential equations.

To extend applicability of these approaches their mathematical background
should be further developed and certainly that will be useful in other fields of
research like it was with computer algebra systems at the beginning of seventies.
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In general Feynman diagrams are sums of tensor integrals. These integrals can be
expressed as combinations of scalar integrals multiplied by products of tensors made
of Mankowski tensor and external momenta.

There are essentially two different methods for reducing tensor integrals to scalar
ones. One method (Passarino-Veltman) based on Ansatz for such integrals in terms of
all possible combinations of Mankowski tensor and external momenta multiplied by
unknown coefficients. For example,∫

ddk kµkν
k2(k − p1)2(k − p2)2

= x1gµν + x2p1µp1ν + x3p1µp2ν + x4p2µp1ν + x5p2µp2ν

Contracting this Ansatz with gµν , p1µp1ν , ... one get system of equations for x1, ..., x5.
Solution for x1, ..., x5 will be given in terms of scalar integrals. In a similar way one
can get representation for more complicated integrals. For higher rank tensor integrals
such method leads to very big complicated systems of equations.
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Another method for reducing tensor integrals is attributed to introducing auxiliary
vectors vj , representing products of integration vectors as derivatives w.r.t. these
vectors,

k1µ1 . . .kL,µr =
1

ir
∂

∂vµ1
. . .

∂

∂vµr
exp[ivjkj ]|vs=0 ,

transforming the resulting momentum integrals into integrals over Feynman
parameters. From this parametric representation for an arbitrary tensor integral one
can obtain the following formula:∫

ddk1. . .

∫
ddkL

k1µ. . .kNν

(k
2
1 −m2

1)
ν1 . . .(k

2
N −m2

N )νN

= Tµ,...,ν(q, ∂,d+)

∫
ddk1. . .

∫
ddkL

1

(k
2
1 −m2

1)
ν1 . . .(k

2
N −m2

N )νN

where

d+G(d) = G(d+2) and ∂j =
∂

∂m2
j

A general formula for the polynomial tensor operator Tµ,...,ν(q, ∂,d+) was given by
O.T., Phys.Rev. D54 .
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This method is very efficient and it is easily implementable on computers. There is no
need to solve huge systems of linear equations. However integrals with different shifts
of the space-time dimension do appear. To reduce all such scalar integrals to basic set
of integrals the method of generalized recurrence relations was developed
O.V. T., Phys.Rev. D.54(1996) 6479. To obtain recurrence relations one can use ’t
Hooft and Veltman idea (Nucl.Phys. B44 (1972) 189) that∫

ddk1. . .

∫
ddkL

∂

∂kjµ

ljµ

(k
2
1 −m2

1)
ν1 . . .(k

2
N −m2

N )νN
= 0,

where kj are linear combinations of external and integration momenta, lµ- is either
integration or external momentum.

Scalar products emerging after differentiation w.r.t. k, can be represented as
combinations of factors in denominators, masses and external momenta (IBP method):

k1q1 =
1

2
{[(k1 + q1)

2 −m2
1]− [k21 −m2

1]− q21}, ....
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When it is not possible one should introduce into consideration artificial factors in
denominators. As a result one gets recurrence relations connecting integrals with
different powers of propagators νj .
One can represent emerging scalar products in terms of integrals with shifted
space-time dimension by exploiting the formula:∫

ddk1. . .

∫
ddkL

k1µ. . .kNν

(k
2
1 −m2

1)
ν1 . . .(k

2
N −m2

N )νN

= Tµ,...,ν(q, ∂,d+)

∫
ddk1. . .

∫
ddkL

1

(k
2
1 −m2

1)
ν1 . . .(k

2
N −m2

N )νN

As a result one gets recurrence relations connecting integrals with different powers of
propagators νj and also integrals with different dimensionality d.

Important: These recurrence relations additionally to νj have new recurrence
parameter - d. For this reason we call them generalized recurrence relations

With this new parameter one can construct very efficient algorithms for reducing
scalar integrals to a set of bases integrals.
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The system of generalized recurrence relations is strongly overdetermined. To find
minimal set of recurrence relations allowing to reduce scalar integrals to minimal set
of integrals it was proposed to use

Theory of Gröbner bases and Buchberger algorithm.

To use theory of Gröbner bases for recurrence relations for Feynman integrals for the
first time was proposed by
1. O.V. T
Reduction of Feynman graph amplitudes to a minimal set of basic integrals ,
Acta Physica Polonica, v B29 (1998) 2655
2. O. V. T,
Computation of Gröbner bases for two-loop propagator type integrals,
Talk at ACAT-2003
Nucl. Instrum. Meth. A 534 (2004) 293 [arXiv:hep-ph/0403253]
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Gröbner bases for IBP relations for the two-loop self energy integrals

J
(d)
3 (ν1, ν2, ν3) =

1

(iπd/2)2

∫ ∫
ddk1d

dk2
(k21 −m2

1)
ν1((k1 − k2)2 −m2

2)
ν2(k22 −m2

3)
ν3
.

Gröbner bases for IBP recurrence relations:

∆123ν11
+J

(d)
3 (ν1ν2ν3) =

{
u123(d− ν1 − 2ν2) + 2m2

2(ν1 − ν2)

+u312ν11
+(2− − 3−) + 2m2

2ν22
+(1− − 3−)

}
J
(d)
3 (ν1ν2ν3).

∆123ν22
+J

(d)
3 (ν1ν2ν3) =

{
u213(d− ν2 − 2ν1) + 2m2

1(ν2 − ν1)

+u321ν22
+(1− − 3−) + 2m2

1ν11
+(2− − 3−)

}
J
(d)
3 (ν1ν2ν3).

∆123ν33
+J

(d)
3 (ν1ν2ν3) =

{
u312(d− ν3 − 2ν1) + 2m2

1(ν3 − ν1)

+u231ν33
+(1− − 2−) + 2m2

1ν11
+(3− − 2−)

}
J
(d)
3 (ν1ν2ν3).

where 1±J
(d)
3 (ν1, ν2ν3) = J

(d)
3 (ν1 ± 1, ν2, ν3),..., uijk = mi −mj −mk and

∆ijk = m4
i +m4

j +m4
k − 2m2

im
2
j − 2m2

im
2
k − 2m2

jm
2
k.
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Gröbner bases for generalized recurrence relations:

(d− 2)ν11
+J

(d)
3 (ν1ν2ν3) =

{
−u123 − 1− + 2− + 3−} J (d−2)

3 (ν1, ν2, ν3),

(d− 2)ν22
+J

(d)
3 (ν1ν2ν3) =

{
−u213 − 2− + 1− + 3−} J (d−2)

3 (ν1, ν2, ν3),

(d− 2)ν33
+J

(d)
3 (ν1ν2ν3) =

{
−u321 − 3− + 2− + 1−} J (d−2)

3 (ν1, ν2, ν3),

(d− 2)(d− ν1 − ν2 − ν3)J
(d)
3 (ν1, ν2, ν3) =

−
{

∆123 + u1231
− + u2132

− + u3123
−} J (d−2)

3 (ν1, ν2, ν3).

By exploiting Gröbner bases either for IBP relations or for generalized recurrence relations
and explicit formula for tadpole integral:

one can reduce any integral J (d)
3 (ν1, ν2, ν3) with integer ν,ν2, ν3 to the set of basic integrals

J
(d)
3 (1, 1, 1), J (d)

3 (0, 1, 1) , J (d)
3 (1, 0, 1) , J (d)

3 (1, 1, 0).

It turns out that Gröbner bases for generalized recurrence relations is much more efficient
than for IBP relations!!
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Example: reduction of the integral J (d)
3 (3, 5, 4)

IBP relations: 72 sec
Generalized recurrence relations: 9 sec

For higher powers of propagators the difference in time is more than 20 times.
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There are even more efficient relations. For the considered example they are:

(d− 2)ν1ν21
+2+J

(d)
3 (ν1, ν2, ν3) =

{
−2m2

3ν33
+ + (d− 2− 2ν3)

}
J
(d−2)
3 (ν1, ν2, ν3),

(d− 2)ν1ν31
+3+J

(d)
3 (ν1, ν2, ν3) =

{
−2m2

2ν12
+ + (d− 2− 2ν2)

}
J
(d−2)
3 (ν1, ν2, ν3),

(d− 2)ν2ν32
+3+J

(d)
3 (ν1, ν2, ν3) =

{
−2m2

1ν11
+ + (d− 2− 2ν1)

}
J
(d−2)
3 (ν1, ν2, ν3),{

ν11
+ + ν22

+ + ν33
+ − (d− ν1 − ν2 − ν3)

}
J
(d)
3 (ν1, ν2, ν3) = 0.

To find these relations we used Gröbner bases. For the considered integral J (d)
3 (3, 5, 4)

exploiting above relations only 3 seconds were needed to reduce it to basic integrals.

The reason is that this optimal set of relations has no explicit dependence on
kinematical Gram determinants! This was one of the criteria for finding those
relations. Reduction of d→ d− 2 was very essential! Gram determinants disappear
only in relations connecting integrals with different dimensions of the space-time!

Similar recurrence relations were discovered for the one-loop multi-leg integrals. The
calculations of the one-loop five gluon amplitude are now in progress. Depending on
diagram evaluations are from 10 to 100 times faster than with Gröbner bases for
generalized recurrence relations.
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Dimensional recurrences

Dimensional recurrences are particular case of generalized recurrence relations. They
include integral with fixed powers of propagators but with different shifts of the space
- time dimension and simpler integrals considered as inhomogeneous part of the
equation.

General solution of dimensional recurrences can be written in the form:

Mk(d, {mj}, {pipk}) =
∑
s

Φs(d, {mj}, {pipk}) ws(d, {mj}, {pipk})

where Φs are functions from the fundamental set of solutions for and ws are the
so-called ‘periodics‘ satisfying the following condition:

ws(d+ 2, {mj}, {pipk}) = ws(d, {mj}, {pipk})

They can be found, for example, from the comparison of the above solution with the
asymptotic value of the integral at d→∞. In some cases one can obtain simple
differential equation with respect to kinematic variables for ws(d, {mj}, {pipk}).
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With the help of these algorithms new analytic results were obtained:

• hypergeometric representation for the one - loop integrals corresponding to
diagrams with three- and four external legs

• analytic formula for the one-loop massless pentagon type integral

• hypergeometric representation for the two-loop ’sunrise’ propagator type integral

Recently Li and Smirnov applied this method in calculating four loop massless
propagator type integrals satisfying first order dimensional recurrence relation.
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Functional equations for Feynman integrals
Feynman integrals satisfy recurrence relations which we write in the form∑

j

QjIj,n =
∑
k,r<n

Rk,rIk,r

where Qj , Rk are polynomials in masses, scalar products of external momenta, d, and
powers of propagators. Ik,r - are integrals with r external lines. In recurrence relations
some integrals are more complicated than the others: they have more arguments than
the others.

General method for deriving functional equations:

By choosing kinematic variables, masses, indices of propagators remove most
complicated integrals, i.e. impose conditions :

Qj = 0

keeping at least some other coefficients different from zero

Rk 6= 0
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Example: one-loop n-point integrals
Integrals I(d)n satisfy generalized recurrence relations O.T. in Phys.Rev.D54 (1996)
p.6479

Gn−1νjj
+I(d+2)

n − (∂j∆n)I(d)n =
n∑
k=1

(∂j∂k∆n)k−I(d)n ,

where j± shifts indices νj → νj ± 1,

∂j ≡
∂

∂m2
j

,

Gn−1 = −2n

∣∣∣∣∣∣∣∣∣
p1p1 p1p2 . . . p1pn−1

...
...

. . .
...

p1pn−1 p2pn−1 . . . pn−1pn−1

∣∣∣∣∣∣∣∣∣ ,

∆n =

∣∣∣∣∣∣∣∣∣
Y11 Y12 . . . Y1n
...

...
. . .

...

Y1n Y2n . . . Ynn

∣∣∣∣∣∣∣∣∣ , Yij = m2
i +m2

j − pij , pij = (pi − pj )
2 ,
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At n = 3, j = 1 we get equation:

G21
+I

(d+2)
3 (m2

1,m
2
2,m

2
3, p23, p13, p12)

−(∂1∆3)I
(d)
3 (m2

1,m
2
2,m

2
3, p23, p13, p12)

= 2(p12 + p23 − p13)I(d)2 (m2
1,m

2
2, p12)

+2(p13 + p23 − p12)I(d)2 (m2
1,m

2
3, p13)− 4p23I

(d)
2 (m2

2,m
2
3, p23).

where

G2 = 2p212 + 2p213 + 2p223 − 4p13p23 − 4p12p13 − 4p23p12,

∆3 = 2(m2
2 −m2

3)[(m
2
1 −m2

2)p13 − (m2
1 −m2

3)p12]− 2m2
1p

2
23 − 2m2

3p
2
12

−2m2
2p

2
13 − 2(m2

1 −m2
3)(m

2
1 −m2

2)p23 + 2(m2
2 +m2

3)p12p13

+2(m2
3 +m2

1)p23p12 + 2(m2
2 +m2

1)p13p23 − 2p12p13p23
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Coefficients in front of I3 depend on 6 variables p12, p13, p23, m2
1,m

2
2,m

2
3. To remove I3

from the equation we must solve system of equations

G2 = 2p212 + 2p213 + 2p223 − 4p13p23 − 4p12p13 − 4p23p12 = 0,

∂1∆3 = −2p223 − 4m2
1p23 + 2m2

2p23 + 2m2
3p23 + 2p12m

2
3

+2m2
2p13 − 2m2

3p13 + 2p13p23 − 2m2
2p12 + 2p23p12 = 0

This system can be resolved w.r.t. p13, p23. There is a nontrivial solution

p13 = s13(m
2
1,m

2
2,m

2
3, p12) =

∆12 + 2p12(m
2
1 +m2

3)− (p12 +m2
1 −m2

2)λ

2p12
,

p23 = s23(m
2
1,m

2
2,m

2
3, p12) =

∆12 + 2p12(m
2
2 +m2

3) + (p12 −m2
1 +m2

2)λ

2p12
.

where
λ = ±

√
∆12 + 4p12m2

3.

∆ij = p2ij +m4
i +m4

j − 2pijm
2
i − 2pijm

2
j − 2m2

im
2
j .
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This solution leads to the following functional equation

I
(d)
2 (m2

1,m
2
2, p12) =

p12 +m2
1 −m2

2 − λ
2p12

I
(d)
2 (m2

1,m
2
3, s13(m

2
1,m

2
2,m

2
3, p12))

+
p12 −m2

1 +m2
2 + λ

2p12
I
(d)
2 (m2

2,m
2
3, s23(m

2
1,m

2
2,m

2
3, p12)).
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Substituting m2
3 = 0 into functional equation we have :

I
(d)
2 (m2

1,m
2
2, p12) =

p12 +m2
1 −m2

2 − α12

2p12
I
(d)
2 (m2

1, 0, s13)

+
p12 −m2

1 +m2
2 + α12

2p12
I
(d)
2 (0,m2

2, s23)

where

s13 =
∆12 + 2p12m

2
1 − (p12 +m2

1 −m2
2)α12

2p12
,

s23 =
∆12 + 2p12m

2
2 + (p12 −m2

1 +m2
2)α12

2p12
,

α12 = ±
√

∆12.

Integral with arbitrary mases and momentum can be expressed in terms of integrals
with one propagator massless !!!
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Analytic result for I(d)2 (0,m2, p2) is known
Bollini and Giambiagi (1972b), Boos and Davydychev (1990rg):

I
(d)
2 (0,m2, p2) = I

(d)
2 (0,m2, 0) 2F1

 1, 2− d
2 ;

d
2 ;

q2

m2

 .
where

I
(d)
2 (0,m2, 0) = −Γ

(
1− d

2

)
md−4.

Substituting this expression for I(d)2 (0,m2, p2) into functional equation we get
complete agreement with the known result for I(d)2 (m2

1,m
2
2, p12)
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Setting m2 = 0 into the previous functional equation we have :

I
(d)
2 (m2

1, 0, p12) =
m2

1

p12
I
(d)
2

(
m2

1, 0,
m4

1

p12

)
+

(p12 −m2
1)

p12
I
(d)
2

(
0, 0,

(p12 −m2
1)

2

p12

)
.

where

I
(d)
2 (0, 0, p2) =

Γ
(
2− d

2

)
Γ2
(
d
2 − 1

)
Γ(d− 2)

(−p2)
d
2
−2.

Integral I(d)2 on the right hand side has inverse argument . In fact this equation
corresponds to the well known formula for analytic continuation:

2F1

 1, 2− d
2 ;

d
2 ;

z

 =
1

z
2F1

 1, 2− d
2 ;

d
2 ;

1

z


+

Γ
(
d
2

)
Γ
(
d
2 − 1

)
Γ(d− 2)

(−z)
d
2
−2

(
1− 1

z

)d−3

.
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Very similar functional equations do exist for the three-, four-, e.t.c integrals.
Functional equations here play the same role as 24 Kummer relations for Gauss’
hypergeometric function! Therefore functional equations can be used for
analytic continuation of functions with several variables.

It is not so easy to obtain formulae for analytic continuation for hypergeometric
functions with several variables. For the rather simple Appell function F1

explicit representation in terms of Gauss hypergeometric function was used.

For analytic continuation of Feynman integrals with the help of functional
equations explicit representation is not needed!

It will be interesting to obtain functional equations for some Green functions to
all orders of perturbation theory. Probably one can use use Dyson-Schwinger
equations and exploit functional equations for the kernels of this equations.
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As was realized many years ago in papers by Regge (1967), Feynman integrals are
generalized hypergeometric functions. This conjecture was confirmed through the
evaluations of specific Feynman integrals. From numerous results we know that
Feynman integrals can be expressed in terms of generalized hypergeometric functions,
Appell functions F1, F2,F3, F4 Laurichella, Laurichella-Saran e.t.c functions. . These
results were obtained using rather different methods, e.g.

• by directly evaluating the integrals from their Feynman parameter representations,

• by applying Mellin-Barnes integral representations,

• by solving recurrence relations,

• by making use of the negative-dimension approach,

• or by using spectral representations.

As a method for finding relations between hypergeometric functions, Srivastava and
Karlsson in their book advocated the evaluation of integrals reducible to
hypergeometric functions by several different methods and the comparison of the
results thus obtained. In this respect, the evaluation of Feynman integrals may be
considered as a rich source for finding relations between hypergeometric functions.
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As an example we consider the evaluation of the one-loop propagator type integral
with arbitrary masses and arbitrary powers of propagators:

I(d)ν1ν2(m2
1,m

2
2; s12) =

∫
ddq

iπd/2
1

[(q − p1)2 −m2
1]
ν1 [(q − p2)2 −m2

2]
ν2
.

This integral can be written as an integral over Feynman parameters:

I(d)ν1ν2(m2
1,m

2
2; s12) = (−1)ν1+ν2

Γ
(
ν1 + ν2 − d

2

)
Γ(ν1)Γ(ν2)

∫ 1

0

dx xν1−1(1− x)ν2−1

[s12x2 + x(m2
1 −m2

2 − s12) +m2
2]
ν1+ν2− d

2

.

Representing the quadratic polynomial in the denominator as

s12x
2 + x(m2

1 −m2
2 − s12) +m2

2 = m2
2(1− x+x)(1− x−x),

where

x± =
1 + x− y ±

√
x2 + y2 + 1− 2xy − 2x− 2y

2
, x =

s12
m2

2

, y =
m2

1

m2
2

,

and then comparing our integral with the integral representation for the Appell
function F1
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the following result follows:

I(d)ν1ν2(m2
1,m

2
2; s12) =

(−1)ν1+ν2Γ
(
ν1 + ν2 − d

2

)
Γ(ν1 + ν2)(m2

2)
ν1+ν2−d/2

×F1

(
ν1, ν1 + ν2 −

d

2
, ν1 + ν2 −

d

2
; ν1 + ν2;x−, x+

)
,

An analytic result for this integral in terms of two Appell functions F4 was derived by
E. Boos and A. Davydychev. Comparing both results we can derive relation between
F1 and F4 functions. Just for simplicity we consider the case m1 = m2. By using
Mellin-Barnes representation E. Boos and A. Davydychev obtained the following result

I(d)ν1ν2(m2,m2; s12) = (−1)ν1+ν2(m2)d/2−ν1−ν2

×
Γ
(
ν1 + ν2 − d

2

)
Γ(ν1 + ν2)

3F2

 ν1, ν2, ν1 + ν2 − d
2 ;

ν1+ν2
2 , ν1+ν2+1

2 ;

x1
x2

 .
Comparing this formula with our result taken at m2

1 = m2
2 = m2, we obtain:

F1

(
α, β, β; γ; x−

√
x2 − 2x, x+

√
x2 − 2x

)
= 3F2

 α, γ − α, β ;

γ
2 ,

γ+1
2 ;

x

2

 ,
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which may be rewritten as:

F1

(
α, β, β; γ; x,

x

x− 1

)
= 3F2

 α, γ − α, β ;

γ
2 ,

γ+1
2 ;

x2

4(x− 1)

 .
To the best of our knowledge, there is no such a relation in the mathematical
literature.
Another interesting relation can be obtained from the comparison of imaginary part of
the two-loop "sunrise integral"calculated by two different methods:

2F1

 1
2 ,

1
2 ;

1 ;

(x− 3)(x+ 1)3

(x+ 3)(x− 1)3

 =

√
3(x+ 3)(x− 1)3

(x2 + 3)
2F1

 1
3 ,

2
3 ;

1 ;

x2(x2 − 9)2

(x2 + 3)3

 .
The hypergeometric function 2F1 on the left-hand side of this equation is
proportional to the complete elliptic integral of the first kind. Relations between
hypergeometric functions with parameters 1/2, 1/2, 1 and 1/3, 2/3, 1 but with
arguments different from that in the above equation were first derived by Ramanujan.

Several other relations one can find in the paper:
B. A. Kniehl and O.V. T., (arXiv:1108.6019 [math-ph])
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Summary

• generalized recurrence relations provide us a tool for efficient evaluation of
Feynman integrals but further investigation concerning optimal sets (Gröbner
bases) of recurrence relations is needed

• the method of dimensional recurrences can be used in calculation of multiscale
integrals as well as multiloop integrals. Dimensional recurrences are simpler than
differential equations because singularity structure of differential equations w.r.t
kinematic variables is more complicated than w.r.t. d

• functional equations represent a powerful instrument for analytic continuation of
Feynman integrals. For a detailed classification of these equations group
theoretical approach should be formulated.

• computational machinery for Feynman integrals can be used to obtain
relationships for hypergeometric functions that will be useful in other applications.
From the already known results we can essentially extend lists of formulae given
in the well known books by Baitmen-Erdely and Brychkov,Marichev,Prudnikov.
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