# Measurement of the single top production with the CMS detector



Andrey Popov On behalf of the CMS collaboration

QFTHEP 2011, Sochi, Russia 26.09.2011

1 / 29

# Outline

- Introduction
  - CMS detector
  - $\circ~$  Physical motivation for single top studies
  - $\circ~$  Single top processes
- Single top t- & tW-channels
  - General description of the process
  - Event selection
  - Data-driven estimations
  - Analysis procedure
  - Systematics
  - Results
- Conclusions

## CMS detector



## Why is single top interesting?

Single top probes the W-t-b interaction and can be sensitive to

- additional non-standard particles
  - $\circ$  extra quarks
  - extra gauge bosons
  - additional scalar bosons
- modified *t*-quark interactions
  - $\circ~$  FCNC contribution
  - right-handed interactions

## Single top processes



Different rates and different kinematical regions

| <b>x-sec, pb</b><br>$m_t = 173 \text{ GeV}$ | <i>s</i> -channel | <i>tW</i> -channel | t-channel | tī  |
|---------------------------------------------|-------------------|--------------------|-----------|-----|
| TEVATRON, <i>pp</i> @1.96 TeV               | 1.04              | 0.22               | 2.08      | 7.2 |
| LHC, <i>pp</i> @7 TeV                       | 4.59              | 15.6               | 63.2      | 165 |

N. Kidonakis, Phys. Rev. D 81, 054028 (2010), Phys. Rev. D 82, 054018 (2010), Phys. Rev. D 83, 091503(R) (2011), arXiv:0909.0037v1

## Single top *t*-channel



- Analysis focused on leptonic decays of W:  $t \rightarrow Wb \rightarrow l\nu b$
- Signal signature:
  - $\circ~$  exactly one isolated lepton,
  - forward light-quark jet,
  - central *b*-jet from top decay,
  - $\circ~$  additional *b*-jet with small  $p_{\rm T}$  is outside acceptance
- Main backgrounds:
  - $\circ$   $t\bar{t}$ : similar kinematics, high rate
  - $\circ W(\rightarrow l\nu) + jets$
  - QCD: extreme kinematical region, data-driven estimation needed

#### Analysis strategy

Two independent and complementary analyses performed:

- "2D" Exploits signal-specific angular properties performing a 2D fit in the corresponding variables
- "BDT" Multivariate approach with boosted decision trees. Combines many distinctive variables into a single powerful discriminator

Results in *t*-channel presented here correspond to 36  $pb^{-1}$  collected in *pp* run of 2010. The updated results are in preparation

Details in Phys. Rev. Lett. 107, 091802 (2011) and arXiv:1106.3052

## Event selection (1/2)

Very similar in 2D and BDT analyses

Leptons

- Exactly one "tight" muon (electron) with
  - $p_{T}(E_{T}) > 20(30) \text{ GeV}/c, |\eta| < 2.1(2.5)$
  - relative isolation  $I_{\rm r} = I_{\rm abs}/p_{\rm T} (E_{\rm T}) < 0.05 (0.1)$ , absolute isolation  $I_{\rm abs}$  is sum of  $p_{\rm T}$  in cone of radius 0.3 around the lepton, excluding the lepton itself
  - $\circ~$  no jet within cone of radius 0.3 around the lepton
- Veto additional "loose" leptons with

• 
$$p_{T}(E_{T}) > 10(15) \text{ GeV}$$

# Event selection (2/2)

#### Jets

- Exactly two anti- $k_{\rm T}$  0.5 jets with  $p_{\rm T}>$  30 GeV/c,  $|\eta|<5$
- Exactly one *b*-tagged jet (The *b*-tagging algorithm exploits the impact parameter of the tracks associated with the jet)
- (2D analysis only) Exactly one b-vetoed jet
- (BDT analysis only) Δφ(j<sub>1</sub>, j<sub>2</sub>) < 3: excludes back-to-back W+jets events poorly modeled with Pythia D6T tune

#### Invariant mass

•  $M_{\rm T} > 40\,(50)~{
m GeV}/c$  in muon (electron) channel, where

$$M_{\rm T} = \sqrt{(p_{\rm T}(l) + p_{\rm T}(\nu))^2 - (p_x(l) + p_x(\nu))^2 - (p_y(l) + p_y(\nu))^2}$$

## Data-driven QCD estimation

The analysis probes for a very specific kinematical region populated by the tails of QCD distribution only

 Amount of QCD estimated with maximum likelihood fit to M<sub>T</sub>:

 $F(M_{\rm T}) = a \cdot S(M_{\rm T}) + b \cdot B(M_{\rm T})$ 

- Shape of non-QCD S(M<sub>T</sub>) taken from simulation
- Shape of QCD B(M<sub>T</sub>) taken from orthogonal data sample with inverted cut in I<sub>r</sub>



## Event yields after selection

| Process                      | 2D, $\mu$ channel   | 2D, e channel           | BDT, $\mu$ channel  | BDT, e channel      |
|------------------------------|---------------------|-------------------------|---------------------|---------------------|
| single top, <i>t</i> channel | $17.6 \pm 0.7$ (†)  | $11.2 \pm 0.4$ (†)      | $17.6 \pm 0.7$ (†)  | $10.7 \pm 0.5$ (†)  |
| single top, s channel        | $0.9\pm0.3$         | $0.6\pm0.2$             | $1.4\pm0.5$         | $1.0\pm0.3$         |
| single top, tW               | $3.1\pm0.9$         | $2.4\pm0.7$             | $3.8\pm1.1$         | < 0.1               |
| WW                           | $0.29\pm0.09$       | $0.23\pm0.07$           | $0.32\pm0.10$       | $0.23\pm0.07$       |
| WZ                           | $0.24\pm0.07$       | $0.17\pm0.05$           | $0.33\pm0.10$       | $1.5\pm0.4$         |
| ZZ                           | $0.018 {\pm}~0.005$ | $0.011\pm0.003$         | $0.020\pm0.006$     | < 0.1               |
| W+ light partons             | $18.2\pm5.5$        | $11.6 \pm 2.3$          | $8.4 \pm 4.2$       | $7.0 \pm 3.5$       |
| Z + X                        | $1.7\pm0.5$         | $1.6\pm0.3$             | $0.7\pm0.2$         | $0.05\pm0.03$       |
| QCD                          | $0.6\pm0.3$         | $2.6^{+3.4}_{-2.6}$     | $4.9\pm2.5$         | $5.3\pm5.3$         |
| $VQ\bar{Q}$                  | $20.4\pm10.2$       | $14.1\pm7.1$            | $17.6\pm8.8$        | $11.7\pm5.8$        |
| Wc                           | 12.9 + 12.9 - 6.5   | $9.4  {}^{+9.4}_{-4.7}$ | $9.2^{+9.2}_{-4.6}$ | $5.9^{+5.9}_{-2.9}$ |
| tī                           | $20.3\pm3.6$        | $15.6 \pm 2.8$          | $34.9\pm4.9$        | $22.9 \pm 3.2$      |
| Total background             | $78.6 \pm 15.2$     | $58.4 \pm 11.0$         | $82.4 \pm 13.1$     | $55.9 \pm 10.2$     |
| Signal + background          | $96.2\pm15.3$       | $69.6 \pm 11.0$         | $100.0 \pm 13.2$    | $66.6 \pm 10.2$     |
| Data                         | 112                 | 72                      | 139                 | 82                  |

## 2D analysis variables





- Due to V A structure of weak interaction t-quark is almost 100% left-handed polarized
- This feature propagates to signal asymmetry in distribution over cos θ<sup>\*</sup><sub>lj</sub> (angle calculated in *t*-quark rest frame)
- Light-quark jet recoiling against much more massive *t*-quark has non-central pseudorapidity distribution

## 2D signal extraction

The x-section is determined with extended maximum likelihood fit to  $(\cos \theta_{li}^*, |\eta_{lj}|)$  distribution



13 / 29

## BDT analysis variables

- 37 variables used in total. They reflect different event properties:
  - $\circ\;$  kinematics and properties of the lepton and jets
  - correlations between these objects
  - properties of derived objects (t-quark, W, etc.)
  - $^{\circ}\,$  angular distributions between the original and derived objects
  - global event characteristics (sphericity, total transverse energy, etc.)
  - The most sensitive variables:
    - $\circ$  lepton's  $p_{\rm T}$
    - $\hat{s}$  (invariant mass of system W + j + j)
    - $\circ$  dijet  $p_{T}$
    - $\circ p_{T}$  of the most *b*-tagged jet
    - reconstructed *t*-quark mass



#### BDT signal extraction

The x-section is determined from a binned likelihood fit to BDT output within a Bayesian approach. The systematics is treated as nuisance parameters, they are marginalized out through Markov chain Monte Carlo (MCMC)



## Systematics

Impact estimated through pseudoexperiments

Main sources of systematics:

- *b*-tagging
- $Q^2$  scaling
- jet energy scale

|                                         | impact on   |       |       |       |       |  |
|-----------------------------------------|-------------|-------|-------|-------|-------|--|
| uncertainty                             | correlation | 2D    |       | BDT   |       |  |
|                                         |             | -     | +     | -     | +     |  |
| statistical only                        | 60          | 52    |       | 39    |       |  |
| shared shape/rate uncertainties:        |             |       |       |       |       |  |
| ISR/FSR for $t\bar{t}$                  | 100         | -1.0  | +1.5  | < 0.2 | < 0.2 |  |
| $Q^2$ for $t\bar{t}$                    | 100         | +3.5  | -3.5  | +0.3  | -0.4  |  |
| $Q^2$ for V+jets                        | 100         | +5.7  | -12.0 | +2.6  | -4.5  |  |
| Jet energy scale                        | 100         | -8.8  | +3.6  | -5.1  | +1.2  |  |
| b tagging efficiency                    | 100         | -19.6 | +19.8 | -15.2 | +14.6 |  |
| MET (uncl. energy)                      | 100         | -5.7  | +3.7  | -3.9  | -0.5  |  |
| shared rate-only uncertainties:         |             |       |       |       |       |  |
| tī (±14%)                               | 100         | +2.0  | -1.9  | +0.5  | -0.6  |  |
| single top $s$ (±30%)                   | 100         | -0.4  | +0.5  | -0.4  | +0.4  |  |
| single top $tW$ (±30%)                  | 100         | +1.1  | -1.0  | < 0.2 | < 0.2 |  |
| $Wb\bar{b}, Wc\bar{c} \ (\pm 50\%)$     | 100         | -3.0  | +2.9  | +1.7  | -1.9  |  |
| $Wc \left( {}^{+100\%}_{-50\%} \right)$ | 100         | -3.0  | +6.1  | -2.4  | +4.4  |  |
| Z+jets (±30%)                           | 100         | -0.6  | +0.7  | +0.4  | -0.2  |  |
| electron QCD (BDT: ±100%, 2D: +130%)    | 50          | +2.9  | -3.7  | -1.7  | +1.7  |  |
| muon QCD (BDT: ±50%, 2D: ±50%)          | 50          | < 0.2 | < 0.2 | -2.1  | +2.1  |  |
| signal model                            | 100         | -5.0  | +5.0  | -4.0  | +4.0  |  |
| BDT-only uncertainties:                 |             |       |       |       |       |  |
| electron efficiency (±5%)               | 0           | —     | -     | -1.4  | +1.4  |  |
| muon efficiency $(\pm 5\%)$             | 0           | _     | _     | -3.6  | +3.5  |  |
| V+jets (±50%)                           | 0           | _     | _     | -1.5  | < 0.2 |  |
| 2D-only uncertainties:                  |             |       |       |       |       |  |
| muon W+light (±30%)                     | 0           | -1.4  | +1.4  |       |       |  |
| electron W+light (±20%)                 | 0           | -0.6  | +0.7  | —     | —     |  |
| W+light model uncertainties             | 0           | -5.4  | +5.4  | —     | _     |  |

#### Combination and results in t-channel

- 2D and BDT analyses combined through BLUE method
- The combined x-section:

 $83.6\pm29.8$  (stat.+syst.) $\pm3.3$  (lumi.) pb

- Stat. significance is 3.7 (3.5)  $\sigma$ w.r.t. expected significance  $2.1^{+1.0}_{-1.1} (2.9^{+1.0}_{-0.9}) \sigma$  for 2D (BDT)
- 2D (BDT) sets 95% CL lower limit

 $|V_{tb}| > 0.62 (0.68),$ 

where  $|V_{td}|, |V_{ts}| \ll |V_{tb}|$  and  $|V_{tb}| \in [0, 1]$  assumed



## Single top tW-channel



- Analysis exploits leptonic decays of W:  $tW \rightarrow WbW \rightarrow l\nu bl'\nu'$
- Signal signature:
  - $\circ\;$  exactly two isolated leptons of opposite charge
  - exactly one *b*-jet within acceptance
- Main backgrounds:
  - $t\bar{t}$ : very similar kinematics (interference at NLO!), high rate
  - $\circ ~~ \textit{Z}/\gamma^* (\rightarrow\textit{II}) + \mathsf{jets}$

#### Analysis strategy

- Three leptonic final states:  $ee, \mu\mu, e\mu$
- Pure counting experiment
- Rates for  $t\bar{t}$  and  $Z/\gamma^*(\to {\it II})+{\rm jets}$  backgrounds estimated from data

Analysis in tW-channel is based on the integrated luminosity of 2.1 fb<sup>-1</sup> recorded during the first data-taking period of 2011

Details in CMS PAS TOP-11-022

## Event selection (1/3)

#### Leptons

- Exactly two "tight" leptons of opposite charge with
  - $\circ~\ensuremath{\textit{p}_{\mathsf{T}}}\xspace > 20~\ensuremath{\mathsf{GeV}}\xspace / c,~|\eta| < 2.4\,(2.5)$  for a muon (electron)
  - $\,\circ\,$  relative isolation  $\mathit{I_{r}} < 0.15$
- Veto additional "loose" muons (electrons) with
  - $\circ~
    ho_{
    m T}>10\,(15)~{
    m GeV}/c,~|\eta|<2.5$
  - $\circ I_r < 0.2$
- Reject events with leptons of the same flavor and dilepton mass
  - $\circ$  81 <  $m_{II}$  < 101 GeV $/c^2$ : Z veto
  - $\circ m_{II} < 20 \text{ GeV}/c^2$ : poor data-MC agreement

# Event selection (2/3)

#### Jets

- Anti- $k_{\rm T}$  algorithm with cones 0.5
- Veto "tight" leptons inside cone 0.3 around a jet
- Exactly one jet with  $p_{\rm T}>$  30 GeV/c,  $|\eta|<$  2.4
- The jet must be *b*-tagged (the *b*-tagging algorithm exploits reconstructed secondary vertex)
- Veto additional *b*-tagged jets with  $p_{\rm T} > 20~{\rm GeV}/c$

## Event selection (3/3)

#### Transverse balance

- $p_{T}$  of system  $l_{1} + l_{2} + j + \not\!\!\! E_{T}$  must be less than 60 GeV/c



 $e\mu$  final state, events passing leptonic step of selection and containing exactly one jet

22 / 29

## Data-driven estimation of $Z/\gamma^*$ and $t\bar{t}$

•  $Z/\gamma^*$  + jets normalization estimated with the events failing Z veto:

$$N_{ll,\text{out}}^{\text{estimated}} = \frac{N_{ll,\text{out}}^{\text{MC}}}{N_{ll,\text{in}}^{\text{MC}}} \cdot \left(N_{ll,\text{in}}^{\text{observed}} - \frac{1}{2}k \cdot N_{e\mu,\text{in}}^{\text{observed}}\right)$$

- $N_{e\mu,in}^{\text{observed}}$  accounts for non-peaking backgrounds (e.g.  $t\bar{t}$ )
- factor k is responsible for difference in  $e/\mu$  acceptance (taken from data from numbers of near-peak *ee* and  $\mu\mu$  events after leptonic selection only)
- $t\bar{t}$  rate is related to one of the largest sources of uncertainty
  - $\circ\,$  two control regions are defined: 2 jets, 1 tag and 2 jets, 2 tags; they are by far dominated by  $t\bar{t}$
  - numbers of events in these regions are fed into the statistical procedure constraining  $t\bar{t}$  normalization and *b*-tagging efficiency

# Event yields after selection (1/2)

| process                           | ee channel      | $e\mu$ channel   | $\mu\mu$ channel |  |  |
|-----------------------------------|-----------------|------------------|------------------|--|--|
| Signal region (1jet, 1tag)        |                 |                  |                  |  |  |
| tW                                | $24.7{\pm}0.9$  | $88\pm 2$        | 39±1             |  |  |
| tī                                | $110{\pm}4$     | $372 \pm 8$      | $174 \pm 5$      |  |  |
| $Z/\gamma^*$ (data-driven)        | $20.7\pm3.9$    | $10\pm 2$        | $45.7\pm6.1$     |  |  |
| other                             | $1.0 \pm 0.2$   | $5\pm1$          | $2.1\pm0.2$      |  |  |
| all background                    | $132\pm4$       | $387\pm9$        | $222\pm8$        |  |  |
| data                              | 149             | 539              | 276              |  |  |
| Background region A (2jets, 1tag) |                 |                  |                  |  |  |
| tī                                | 53±3            | $169 \pm 5$      | $81{\pm}4$       |  |  |
| tW, Z/ $\gamma^*$ , other         | $5.1 {\pm} 0.8$ | $11.0 {\pm} 0.6$ | 9±1              |  |  |
| data                              | 76              | 208              | 100              |  |  |
| Background region B (2jets, 2tag) |                 |                  |                  |  |  |
| tī                                | $23\pm 2$       | 73±4             | 37±3             |  |  |
| tW, Z/ $\gamma^*$ , other         | $1.2 \pm 0.5$   | $2.2 {\pm} 0.2$  | $1.2 {\pm} 0.2$  |  |  |
| data                              | 21              | 86               | 40               |  |  |

## Event yields after selection (2/2)

Event yields in signal and the two control regions



- $Z/\gamma^*$  + jets scaled to data-driven estimate
- $t\bar{t}$  scaled to result of the statistical procedure

## Systematics

| Systematic ( $ee/e\mu/\mu\mu$ ) [%]         | signal tW                                                      | tī                                             | $Z/\gamma^*$ | other    |
|---------------------------------------------|----------------------------------------------------------------|------------------------------------------------|--------------|----------|
| Luminosity                                  | 4.5                                                            | 4.5                                            | 4.5          | 4.5      |
| Pile-up multiplicity                        | 0.48/0.55/0.73                                                 | - / /                                          | -            | *        |
| Trigger Efficiency                          | 1.5                                                            | 1.5                                            | 1.5          | 1.5      |
| Muon reconstruction and identification      | - /1/1                                                         | - /1/1                                         | - /1/1       | - /1/1   |
| Electron reconstruction and identification  | 2/2/ -                                                         | 2/2/ -                                         | 2/2/ -       | 2/2/ -   |
| JES                                         | $\binom{-2.5}{+1.6}$ $\binom{-2.4}{+0.1}$ $\binom{-0.6}{+1.0}$ | $^{-5.6}_{+4.4}/^{-6.0}_{+4.7}/^{-5.9}_{+2.3}$ | -            | *        |
| JER                                         | 1.1/0.5/0.4                                                    | 3.1/3.9/4.4                                    | -            | *        |
| B-tagging                                   | $^{-9.5}_{+10}/^{-9.8}_{+9.8}/^{-9.5}_{+10}$                   | $^{-8.5}_{+10}/^{-11}_{+10}/^{-9.1}_{+11}$     | -            | *        |
| Factorization/Normalization Scale ( $Q^2$ ) | 7.7/6/10                                                       | 7.7/11/12                                      | -            | *        |
| ME/PS matching thresholds                   | -                                                              | 5.7/0.7/2.3                                    | -            | *        |
| ISR/FSR                                     | -                                                              | 8.9/7.3/7.3                                    | -            | *        |
| DR/DS scheme                                | 8.2/9.1/6.6                                                    | ·                                              | -            | *        |
| E <sup>miss</sup> modeling                  | 2.3/0.9/0.9                                                    | -                                              | -            | *        |
| PDF uncertainties                           | 4.5/4.5/4.5                                                    | -                                              | -            | *        |
| Background Normalization                    | -                                                              | 15/15/15                                       | 50/22/50     | *        |
| Simulation statistics                       | 3.5/1.9/2.7                                                    | -                                              | -            | 17/21/11 |

"-" – systematics doesn't apply, " $\star$ " – negligible

#### Results

Measured x-section:

 $22^{+9}_{-7}$  (stat.+syst.) pb

- Observed significance is 2.7  $\sigma$  consistent with the expected significance 1.8  $\pm$  0.9  $\sigma$ 

## Conclusions

- Single top in the *t*-channel has been searched for with two complementary analyses: one exploiting two characteristic angular variables, another one using a multivariate technique
- Both *t*-channel analyses (re)found an evidence of the signal providing compatible results
- The analyses were combined to obtain a more precise measurement of *t*-channel x-section
- The x-section was translated into the lower limit on  $|V_{tb}|$
- The *tW*-channel x-section was measured with a counting experiment
- All the results are in good agreement with the SM expectations

## Thank you for your attention!

## **BACKUP SLIDES**

## Particle flow reconstruction

- Attempts to reconstruct every particle on individual basis
- Better performance thanks to using all the appropriate subdetector systems (e.g. jet performance can profit a lot from using tracker info)
- Every track or calorimeter energy deposit is guaranteed to be associated with one particle at maximum  $\Rightarrow$  no double counting

## BDT validation in W-enriched (zero tag) sample



## Golden candidate of t-channel process, muon



# Golden candidate of *t*-channel process, electron



34 / 29

# tW-analysis: $p_{T}^{\text{system}}$ and $H_{T}$ distributions

 $p_{\rm T}^{\rm system}$  (up) and  $H_{\rm T}$  (down) in ee-,  $e\mu$ -, and  $\mu\mu$ -channels (from left to right)



Full selection except for requirements on these two variables

35 / 29