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Plan our talk

1.

Description of the model of a minimal interaction of
a gravity with scalar matter fields.

Full action up to quadratic order in fluctuations in a
vicinity of a background metric.

Separation of equations for the physical degrees of
freedom (a specially chosen gauge).

Scalar sector in gauge gb — 0 :

Branon mass snectrum in the theory with
a potential ¢4

Asymmetric background solutions and the defect
of the cosmological constant.

Conclusion and remarks.



Formulation of the model
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only two of these equations are independent



Small fluctuations around the background metric:
coordinate transformation X — X = X + (X))

A (X) = gap (X) = Ggon (X) = (Bgac (X) = gapo (X)(C + O (¢?)
= gap (X) — GA;B — QTB;A + 0 (62) ;

Let us define the fluctuations of the metric h4p (X) and the scalar field
¢ (X)) on the background solutions of the equations of motion,
gap(X) = A% (2) (nap + hap (X)):  ©(X) =P (2) + ¢ (X)
hsy = vy hss = 5 éﬂ — AQQM 55 — AC5,

infinitesimal gauge transformations:
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action to quadratic order in fluctuations



The full action to the quadratic order represents the sum
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Separation of equations for the physical degrees of freedom

hu‘u = b,u,y + Fp,,'u -+ F‘u,u -+ E,MV + ffﬁu‘/w;

buv and F,u obey the relation bﬁ”y —h = = Fﬁ“

G=G 00, PG =0 = edn P =0
vector felds are transformed as follows, 7, — F, —¢F,  vi —vh — ¢,

The scalar components:
n, I, ¥, S, ¢ change under gauge transformations in the following way,
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using the parametrization we can calculate the components of the quadratic action,

P, = hli = =305 Iy, — hy = OF, =3¢,

h=hf=0E+4g; Y =D(F° + B =% Y, =CPE+ 0



a partial separation ot degrees of freedom,
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where fu = F,i —“Uj; f;w — fu,v - fv,u

Now let’s examine two gauge choices for scalar sector. The first one pre-

serves the structure of perturbation theory, S = 0.The second one is defined
by setting ¢ = 0. In this case the branon field is described by % in a non-

perturbative setting.



Scalar sector in gauge ¢ — O
ﬁ(g)(’b’” =¢=0)= Ly + L+ Ly,
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we used the identity MJ}(A3)" = —2A°V(®) and integration by parts

For the normalization of the kinetic term it is useful to redefine the field
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This equation allows to calculate the mass spectrum of scalar branons

in gaussian normal coordinates x,, vy,

ds® = A% (2) (dx,dx* — dz?) = exp (—2p (v)) dx,da* — dy?.

s — /exp,o(y) dy, A(z) = exp (—p (1))



the action has a form,
S = [ X/ |g|Ly / d*xdy exp(p WW —exp(=2p)0 (02 + p/O, + V) zp)
For a canonical normalization of the kinetic term a field should be redefined,

) = exp(—p/2)¢. Then the action looks as,
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The spectrum of the branon:
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the replacement exp(—p)¥, = ¥,

(~82 + V() — m? exp(2p)) W = 0,

L, 1, )0, 2 / exXp (_3)0/2) P’
= — — = 4 — o

zero-mode in the potential V =V — m?exp(2p)

These formulas allow to calculate the spectrum of quadratic fluctuations of
the boson field minimally interacting to gravity!



Branon mass spectrum in the theory with potential ¢4

induced by five-dimensional fermions

Serr(®,9) = —M?’/d5X\/|g { R+2>\+j4—" (04D + 2M2D? — @4)}

we assume that K is a small parameter, which characterize the interaction
of gravity and matter fields

use the warped metric in gaussian normal coordinates:
ds® = exp (—2p (y)) dx, dx* — dy?
system of three equations

O = —2M2D + 4D + 23,
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3k R cosmological constant !
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O = —2M3® +20° + O (r) Lo = TP+ O (K?)

the metric is completely determined by matter !
by = M tanh (My) + O (k)  and the conformal factor

2 1
po (1) = ?ﬁ {lncosh (My) + Ztanhz(My) - tMy} + O (k%)

solutions to the asymmetric brane are possible, that corresponds to ¢ £ 0

In the case of a symmetric ¢ = 0

2
y?

B 2
V(yt=0,k=0)= M? (4+ 2 gL —4cosh” (My) )

; -+
sinh?(My) (1 + 2 cosh? (My) )2

y—0
a centrifugal barrier !
Numerical calculations show that at the leading order in the gravitational

constant there are neither zero-modes, no resonances at m? > 0
And localized scalar states don't exist near a symmetric brane with potential !!!



case { ~ 1
In the main approximation in & the potential with asymmetric brane :

~12(1414) cosh* u + 12t coshusinh u{1 - 2cosh* u) ~ 24 cosh®u - 3)

Viu==M ;taﬁzo :2M2 2+
( Y ) ( 4{1+ %) cosh® u = 4t cosh’ usinhu(1 + 2cosh”u) - Jcosh*u -1

Numerical calculations show that at zero mass normalizable localized states
don't arise, but localized states with nonzero mass arise when t>t min, t min =
0.21 M

They are resonances, since V — m? exp(2p) exponentially decreases
at infinity and the barrier is penetrable, although the probability of its
penetration is very small.



Asymmetric background solutions and defect of cosmological constant

the exact asymptotics of the metric and the scalar field with § — ToC
g — const = by,

2
p— kiy, ki = gMﬁL(l + )

In the limit y — +oc we obtain p/ — ko, p”’ — 0, &5 — 0

dimensionless parameters Oy =M, ki = M];?:I:, At = MQS\:I:
(20 =%, =1, |os] =l

For the existence of asymmetric geometries on both sides of the brane one
must require that the parameter of curvature of £ has a different modulo value
at oo and —oc, which is impossible with a constant A and the asymptotics of
the background scalar field, similar in magnitude. Thus, for potentials that
are symmetric under the reflection & — —do, an alignment a solution with an

asymmetric geometry is impossible.



For different asymptotics one must introduce an asymmetry in the
cosmological constant or break the symmetry under the reflection: & — — P

Loer = 65M2Mn(y)®(X) dimensionless function 1) — 1)t 4 — +oc

Oy = —2M*0y + 49/} + 2073 + M’n,
EOM with defect : -
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the cosmological "constant" should depend on “y “ so that the relation were
satisfied on the solutions of the equations of motion
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This is possible only if its (fixed) functional dependence of “y” coincides exactly
with the solution @, (y)

Y
Ay) = Ao + SH;M/O dy'n (4" ) Po(y’), Ao = const

)\(y) — )\:|:



the defect is not a constant, 1/{y) # 0 A(y) — Ay easytoobtain:

— 1 - I
2k% + A = S {20" =" —2np}, 0= —2p+2¢" +7

The equation has three solutions, one of them (p — () realizes an unstable state, it
Is the maximum. To calculate two other solutions, we assume r, < 1 and then

obtain : oy — 41 — % ,
_ e 1 It should be compared with: k4. = — (1l 1)
i 3

The relations between the asymmetry parameter “t”, the asymptotics of the defect and
the cosmological function :

32 1
gtﬁ?z = 5()\— —A4) — RN+ +1-),
16 , 1
oA+t = k= g(A-+A) + k(- —n4) >0

The asymptotics of the defect of scalar matter and of the cosmological constant
completely determine the asymmetry of the conformal factor and of the cosmological
function



Conclusions

1) A model of domain wall ("thick brane") in the noncompact five-dimensional space-time
with asymmetric geometries on both sides of the brane is generated by self-interacting
fermions in the presence of gravity;

2)The asymmetric geometry in the bulk is provided by the asymmetry of scalar field
potential and a corresponding defect of the cosmological constant;

3)The defect of matter fields is accompanied by a defect of the cosmological
"constant” in order to ensure consistency of the equations of motion;

4) In the model with a minimal interaction of gravity and scalar fields for the symmetric
anti-de Sitter geometry there are no localized states in the vicinity of the brane;

5) In the case of anti-de Sitter geometries asymmetric against reflection of the fifth
coordinate such states occur;

6) There is only slowly decaying resonance when a conformal factor for anti-de Sitter
spaces on both sides of the brane have different signs. This case is of a physical interest
because the lifetime of the resonance is longer than the expected lifetime of the proton.
It is expected that the tunneling probability is of order exp{—=31n (21)/x} k < 1072,
However, if the conformal factor starts to grow on one side of the brane, bound states
may appear as zero-modes, but in this case there is a problem with localization of a
massless graviton on the brane.
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Multicomponent scalar field model with
spontaneously broken translational symmetry
(V.A.,A.A. and O.0O.Novikov)

i 0a®;0"®; — V () ) Z Aj07+ (Z @3) h

Jj=1 Jj=1

040®,; = 9( Z @9)

reduced to a Schrodinger-type equations,

Hn®yn (— C?“Jr‘if’w{ﬂ]')‘i’xT—Ziﬁw—ﬁxl}@’x j

N
2392, - 280

Integrability for multicomponent kink solution!
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N=2

(A.&V.Andrianovs, P.Giacconi, R.Soldati)

In order to provide the full basis of scalar fields as bounded and localized states mn
concordance with (4) one must correct the argument of hyperbolic functions My — py, 5 =

W M2 — ,u.2 . It exists only if Aoy = M2 = Ags = é{_p:2 - f'.rfgj = %ﬁ.fi. Accordingly,

D5 1(y) = M tanh(Sy); Paal; 1

- _ _ 92y 9.,
22(Y) _Hmsh(ﬂy}’ Vo = —237/ cosh™( Fy).



Localization of massive fermions on a brane

Consider two types of bispinors W
in order to localize light massive fermions WY = (‘Plj
on an asymmetric thick brane 2

Wy = / X U[(i9"8, +150,)1 — D (y))]¥,

'i_j s Z {I}ali.'!f_}?_lr:e ':xTr:l} = (7, T2, I ‘_]}-
a=1...4

Nontrivial configurations of CD2 and CD4
eventually lead to CP breaking in the Yukawa vertices a\D(X) J onabrane

expansions of left- and right-handed components of fermions,

‘]-fl:l.!l'r} :i (LIEH{I]FE”{?” s L.%_:T]{I-JFII{J"{H'])
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Mass spectrum equations

8,F{" + &(y)F"” = m,Fg’,
—{?HFE{” i if!{y]FH” =m:F",
Two sets of solutions corresponding = m

*
of, — iFiH:.

For upper signs

III."i']Lr + P41 Fp + fIT’{_-F;H = mFip;
L_,fjly + Py ) Fip + (T’,,TF;}_ = mnFir.

(I]'{.. = ‘T}-'l -1 ?(I}g

Zero approximation m = 0, massless Dirac fermion

y
Py(y) =Pa(y) =0; Fip — foly) = Cexp { - / ﬂ-’-y"T’:{yj}} = fol—y); Fip— 0,

No CP breaking!



Next approximation
¥ ¥ s
Fiply) =— L":-:p{ [ r;!'.u'ﬂ?'{l_u']} /: dy’ :&:-:;J{ - [; dy"dy H"]}»(m Fir{y") — by VL jfi}.
Jo LN [ |

To provide a normalizable right-handed component one has to impose
0 f-l"l
/ dy’ ﬂxp{ = / riy”fl'?uiy”]}(mF”_f_y’J — &.(y) +;L{yf}) = 0.
Jo J0

This gives the equation for complex mass spectrum if CDZ,CD4 z 0

1] § . r.l 1
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m

CP breaking!



Generation of asymmetric brane
Two scalar doublets
®,; = M, tanh (By — a), ®1, = 1/ cosh (By — a),
$y1 = My tanh (By + a), @92 = po/ cosh (By + a)

Mass spectrum equation

(V59 + (911P11 + 921 P21 )73 + 922P2T2 + 912D 127 )V =70, ¥

Solution
() ¥ o £ - .
'FI = i:_.r.[_n'_'-{p— [ (I]"'Il = R TR AT ?F}.i' e () even function
' ; ' cogh'FUHATHIMANE 94
(1) C , . | | B(tanh?By: L, ~ = 1 1
Ffﬂ = SI{}??(_H}F([,FJQJI]—?gg-‘_}lﬂ.c_}lt“l.}ﬁll' By (B{_H.ﬁ' - 3] |[ B fr 3:7) — B(tanh” ..?-y:a. v + Ej
) = & a1 = =
Cla Mo — g M), 2 .. :
F;“] . == (g21 M5 _ g1 13{_ — + = arctan e®) odd function
: 2eosh’ Fy a8 = f

(0) 1) . : L :
FL + FL provides an asymmetric brane localization for fermions



