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To specify different types of cosmic fluids one uses a relation
between the pressure p and the energy density ϱ

p = wϱ, p = Ek − V, ϱ = Ek + V

where w is the state parameter.
Contemporary experiments give strong support that
w > 0 — Atoms. (4%)
w = 0 — the Cold Dark Matter. (23%)
w < 0 — the Dark Energy. (73%)
the dark energy state parameter is close to −1:

wDE = − 1± 0.2.

2



The spatially flat Friedmann–Robertson–Walker metric:

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)
,

where a(t) is the scale factor, the Hubble parameter H ≡ ȧ/a.

w(t) = − 1− 2

3

Ḣ

H2
= − 1 +

2Ek

ϱ
. (1)

We consider the case wDE < −1. In this case the Null en-
ergy condition (NEC) is violated and there are problems of
instability at classical and quantum levels.
A possible way to evade the instability problem for models

with w < −1 is to yield a phantom model as an effective one,
arising from a more fundamental theory. Such a possibility
does appear in the string field theory framework
(I.Ya. Aref’eva, astro-ph/0410443, 2004).
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Models with nonlocal scalar fields

The SFT inspired nonlocal gravitation models are introduced
as a sum of the SFT action of the tachyon field ϕ plus the
gravity part of the action. One cannot deduce this form of the
action from the SFT.
Let us consider the f (R) gravity, which is a straightforward

modification of the general relativity, and the following action:

Sf =

∫
d4x

√
−g

(
R

16πGN
+

1

α′g2o

(
1

2
ϕF (α′�g)ϕ− V (ϕ)

)
− Λ

)
, (2)

where go is the open string coupling constant, α′ is the string
length squared.
From the SFT after some approximations we obtained:

FSFT (α
′�g) = (ξ2α′�g + 1)e−2α′�g − c,

where c and ξ2 are constants.
FSFT (�g) has only simple and (for some values of c and ξ2)

double roots.
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The system of the Einstein equations is
a system of nonlocal nonlinear equations !!!

In terms of dimensionless coordinates x̄µ = xµ/
√
α′ and con-

stants the equations look as follow:

Rµν −
R

2
gµν = 8πGN (Tµν − Λgµν) , (3)

F(�g)ϕ =
dV

dϕ
, (4)

where Gµν is the Einstein tensor, the energy–momentum tensor

Tµν = − 2√
−g

δS

δgµν
.

HOW CAN WE FIND A SOLUTION?
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There are two different cases:

• The potential V (ϕ) = C2ϕ
2 + C1ϕ + C0, where C2, C1 and C0

are arbitrary constants. In this case one can construct the
equivalent action with local fields and quadratic potentials.
Number of local fields is equal to number of roots of F(�),
with a glance of order of them. It has been proved for an
arbitrary analytic function F with simple and double roots.

I.Ya. Aref’eva, L.V. Joukovskaya, S.Yu.V., J. Phys. A:
Math. Theor. 41 (2008) 304003, arXiv:0711.1364;

D.J. Mulryne, N.J. Nunes, Phys. Rev. D 78 (2008) 063519,
arXiv:0805.0449

S.Yu.V., Class. Quant. Grav. 27 (2010) 035006,
arXiv:0907.0468

S.Yu.V., Phys. Part. Nucl. Lett. 8 (2011) 310–320,
arXiv:1005.0372

A.S. Koshelev, S.Yu.V., Class. Quant. Grav. 28 (2011) 085019,
arXiv:1009.0746
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A straightforward modification of the General Relativity is
f (R) metric gravity:

S1 =

∫
d4x

√
−g

{
1

16πGN

(
R +

1

L2
f (L2R)

)
+ Lmatter

}
, (5)

The equations of f (R) metric gravity are

f ′(R)Rµν −
f (R)

2
gµν −Dµ∂νf

′(R) + gµν�gf
′(R) = 8πGNTµν. (6)

For f (R) metric gravity models with minimally coupling a
nonlocal scalar field with a quadratic potential the way of
its localization has been proposed in

S.Yu.V., Proc. of QFTHEP2010.
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• The potential V (ϕ) ̸= C2ϕ
2 + C1ϕ + C0. In this case situation

is more difficult and exact solutions is possible to find only
adding some scalar field, for example, a k-essence field.

Numerical Solution:

L. Joukovskaya, JHEP 0902 (2009) 045, arXiv:0807.2065

Approximate solutions for field equation:

G. Calcagni and G. Nardelli, Int. J. Mod. Phys. D 19
(2010) 329–338, arXiv:0904.4245

Exact solutions for field equation:

S.Yu.V., Theor. Math. Phys. 166 (2011) 392–402,
arXiv:1005.5007
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NONLOCAL GRAVITY

There are another type of modifications that explicitly includes
a function of �g operator, in particular, �−1

g and defines a non-
local modification of gravity.
A modification that assumes the existence of a new dimen-

sional parameter M∗ can be of the form

S =

∫
d4x

√
−g

(
M 2

P

2
R +

1

2
RF(�/M 2

∗ )R− Λ

)
(7)

where M∗ is the mass scale at which the higher derivative terms
in the action become important.
MP is the Planck mass: 8πGN = 1/M 2

P .
An analytic function F(�/M 2

∗ ) =
∑
n>0

fn�n .

Biswas T., Mazumdar A., and Siegel W. 2006, JCAP 0603
009 (hep-th/0508194)
Biswas T., Koivisto T., and Mazumdar T. 2010, JCAP 1011

008 (arXiv:1005.0590)
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By virtue of the field redefinition one can transform the non-
local gravity action (7) as follows:

S =

∫
d4x

√
−g

(
M 2

P

2
(1 + Φ)R +

1

2
τF(�)τ −M 2

P

2
Φτ − Λ

)
(8)

with two new scalar fields Φ and τ .
Variation w.r.t. Φ gives τ = R and, therefore, the connection

(8) with action (7) is obvious.
From action (8) one gets the following equations of motion:

M 2
P (1 + Φ)

(
Rµν −

1

2
Rgµν

)
=

1

2

∞∑
n=1

fn

n−1∑
l=0

(
∂µ�lτ∂ν�n−1−lτ +

+ ∂ν�lτ∂µ�n−1−lτ − gµν
(
gρσ∂ρ�lτ∂σ�n−1−lτ +�lτ�n−lτ

))
+

+
1

2
gµν

(
τF(�)τ −M 2

PΦτ
)
+M 2

P (Dµ∂νΦ− gµν�Φ)− Λgµν ,

F(�)τ =
M 2

P

2
Φ ,

τ = R .

10



A modification that does not assume the existence of a new
dimensional parameter in the action

S2 =

∫
d4x

√
−g

{
1

16πGN

[
R
(
1 + f (�−1R)

)
− 2Λ

]
+ Lm

}
, (9)

The reason to consider (9) with corrections involving �−1R
as an origin for dark energy is the following. This term is
dimensionless and it can appear as a prefactor for the Newto-
nian gravitational constant, and explain weakening of gravity
at cosmological scales. Therefore, no new scale needs to be
introduced, in particular the hierarchy between the observed
magnitude of dark energy density and the Planck scale does
not to have to prescribed into the action.
Deser S., Woodard R.P., 2007, Phys. Rev. Lett. 99, 111301
Koivisto T.S., 2008, Phys. Rev. D 77, 123513
Nojiri Sh., Odintsov S.D., 2008, Phys. Lett. B 659, 821–826
Capozziello S., Elizalde E., Nojiri Sh., Odintsov S.D., 2009,

Phys. Lett. B 671 193–198
K. Bamba, Sh. Nojiri, S.D. Odintsov, M. Sasaki, arXiv:1104.2692
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The action (9) can be rewritten by introducing two scalar
fields ϕ and ξ in the following form:

S̃2 =

∫
d4x

√
−g

{
1

16πGN
[R (1 + f (η)) + ξ (�η −R)− 2Λ] + Lm

}
.

(10)
By the variation over ξ, we obtain �ϕ = R.
Substituting ϕ = �−1R into (10), one reobtains (9). All of

these generalizations can be written in the local form due to
incorporation of local scalar fields to the Einstein action.
We take the spatially flat FRW metric

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)
. (11)

The scalar fields η and ξ depend only on time.
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In the FRW metric gravity equations are

− 3H2 (1 + f (η)− ξ) +
1

2
ξ̇η̇ − 3H

d

dt
(f (η)− ξ) + Λ + κ2ρm = 0 , (12)

(
2Ḣ + 3H2

)
(1 + f (η)− ξ)+

1

2
ξ̇η̇+

(
d2

dt2
+ 2H

d

dt

)
(f (η)− ξ)−Λ+κ2Pm = 0 ,

(13)
where H = ȧ/a is the Hubble parameter.
Summing equations (12) and (13), we get

2Ḣ (1 + f (η)− ξ)+ξ̇η̇+

(
d2

dt2
−H

d

dt

)
(f (η)− ξ)+κ2(Pm+ρm) = 0 , (14)

The state equation is

ρ̇m = − 3H(Pm + ρm). (15)

The equations of motion for the scalar fields η and ξ are

η̈ + 3Hη̇ = − 6
(
Ḣ + 2H2

)
, (16)

ξ̈ + 3Hξ̇ = 6
(
Ḣ + 2H2

)
f ′(η). (17)

13



Let us consider the system of equations (14)–(17).
Together with (12) those equations are equivalent to the full

system of the Einstein equations.
Differentiating (12) over t, we get that (12) is an integral of

motion for the system of equations (14)–(17).
Therefore, to find a solution of the Einstein equation one can

solve system (14)–(17), which do not include the cosmological
constant Λ. After this, substituting into (12) the initial values
of the obtained solution one gets the corresponding value of Λ.
The considering system of equations does not include the

function η, only f (η) and the time derivatives of η. This prop-
erty can be used to analyse the stability of the de Sitter solu-
tions.
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de Sitter solutions
We consider

f (η) = f0e
η
β , (18)

where f0 and β are constants.
If H = H0, then equation (16) has the following solution:

η(t) = −4H0(t− t0)− η0e
−3H0(t−t0), (19)

with constants of integration, t0 and η0.
Equation (17) has the following general solution at η0 ̸= 0:

ξ =
12H2

0f0
β

t∫
0


C1 +

t1∫
0

e(−η0 exp[−3H0(t̃−t0)]−4H0(t̃−t0))/β+3H0t2dt̃

 e−3H0t1dt1

−ξ0,

where C1 and ξ0 are arbitrary constants. If β = 2/3, then ξ(t)
can be found explicitly:

ξ(t) =
8f0
9η20

e−(3/2)η0 exp(−3H0(t−t0)) − C1e
−3H0(t−t0) − ξ0.

15



The obtained solutions include four arbitrary parameters: η0,
ξ0, C1 and t0.
We assume that the state parameter wm ≡ Pm/ρm is a constant,

so, equation (15) has the following general solution

ρm = ρ0 e
−3(1+wm)H0(t−t0), (20)

where ρ0 is an arbitrary constant.
At H(t) = H0, equation (14) has the following form:

ξ̇η̇+
1

β
f (η)

(
1

β
η̇2 + η̈

)
− 1

β
H0f (η)η̇− ξ̈+H0ξ̇+κ

2(1+wm)ρm = 0 . (21)

Using (17) we get:

(η̇ + 4H0)ξ̇ +
f (η)

β

(
1

β
η̇2 + η̈ −H0η̇ − 12H2

0

)
+ κ2(1 + wm)ρm = 0 . (22)

The straight forward calculations show that equation (22) has
no solutions at any values of parameters such that f0 ̸= 0, η0 ̸= 0,
and H0 ̸= 0.
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Thus, without loss of the generality we can put η0 = 0. In this
case, at β ̸= 4/3 from (16) and (17) the following solution can
be obtain:

ξ = − 3f0β

3β − 4
e−

4H0(t−t0)
β +

c0
3H0

e−3H0(t−t0) − ξ0, η = − 4H0(t− t0),

where c0 is an arbitrary constant,

Λ = 3H2
0(1 + ξ0), ρm0 =

6 (β − 2)H2
0f0

κ2β
, wm = − 1 +

4

3β
.

The case β = 2 corresponds to ρm0 = 0.
At β = 4/3 we get

ξ(t) = − f0(c0 + 3H0(t− t0))e
−3H0(t−t0) − ξ0,

Λ = 3H2
0(1 + ξ0), Pm = 0, ρm = − 3H2

0f0e
−3H0(t−t0).

This solution corresponds to the dark matter, because, wm = 0.
The obtained solutions generalize de Sitter solutions obtained

in arXiv:1104.2692. We have proved that the obtained solu-
tions are the most general de Sitter solutions.

17



Stability of the de Sitter solutions

Let us introduce new variables

ϕ = f (η) = f0e
η
β , ψ = η̇. (23)

The functions ϕ(t) and ψ(t) are connected by the equation:

ϕ̇ =
1

β
ϕψ. (24)

Let us present the system of equations (14)–(17) as a system of
the first order differential equations in terms of new variables.
We rewrite equations (16) and (17) as follows:

ψ̇ = − 3Hψ − 6

β

(
Ḣ + 2H2

)
ϕ , (25)

ϑ = ξ̇, (26)

ϑ = ξ̇, ϑ̇ = − 3Hϑ +
6

β

(
Ḣ + 2H2

)
ϕ . (27)
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Equation (14) is equivalent to

2Ḣ

(
1 +

β + 12

β
ϕ− ξ

)
= 4H

(
ϕψ

β
− ξ

)
− 1

β2
ϕψ2+

24

β
H2ϕ−ϑψ−κ2(1+ωm)ρm .

Let us consider the de Sitter solution:

ρm = ρ0me
−3(ωm+1)H0(t−t0), Pm = ωmρm, Λ = 3H2

0(1 + ξ0), (28)

β =
4

3(1 + ωm)
, ψ = − 4H0, ϕ = f0e

−4H0t
β . (29)

At β ̸= 4/3 the function

ξ = − 3f0β

3β − 4
e−

4H0(t−t0)
β +

c0
3H0

e−3H0(t−t0) − ξ0,

at β = 4/3

ξ = − f0(c0 + 3H0(t− t0))e
−3H0(t−t0) − ξ0,

At t tends to +∞, we get

ρm → 0, ϕ→ 0, ψ = −4H0, ξ → −ξ0,
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at H0 > 0 and β > 0. System has a fixed point ϕ = 0, ξ = −ξ0,
ψ = 0, ρm = 0.
To analyse the stability of this fixed point we use the Lya-

punov theorem. The Lyapunov theorem states that to prove
the stability of fixed point of nonlinear system it is sufficient
to prove the stability of this fixed point for the corresponding
linearized system.
There are two different cases: Λ = 0 and Λ ̸= 0.
At Λ ̸= 0 one get ξ0 ̸= −1, in the neighbourhood of the fixed

point

ζ ≡
(
1 +

β + 12

β
ϕ− ξ

)
≈ 1 + ξ0 ̸= 0

and we can divide equation () on this expression to get equation
in the standard form:

Ḣ =
1

2ζ

(
4H

(
ϕψ

β
− ϑ

)
− 1

β2
ϕψ2 +

24

β
H2ϕ− ϑψ − κ2(1 + ωm)ρm

)
.
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In the neighborhood of yf

H(t) = H0 + εh1(t) +O(ε2),

ϕ(t) = εϕ1(t) +O(ε2), ψ(t) = − 4H0 + εψ0(t) +O(ε2),

ξ(t) = − ξ0 + εξ1(t) +O(ε2), ϑ(t) = εϑ1(t) +O(ε2),

ρm(t) = ερm1(t) +O(ε2),

where ε is a small parameter.
To first order in ε we obtain

ρ̇m1 = − 4

β
H0ρm1, (30)

ϕ̇1 = − 4

β
H0ϕ1, (31)

ψ̇1 = − 3H0ψ1 + 12H0h1 −
12

β
H2

0ϕ1, (32)

ϑ̇1 = − 3H0ϑ1 +
12

β
H2

0ϕ1, (33)

ḣ1 =
2

(1 + ξ0)

(
− 2

β
H0ϕ1 − ξ0h1 −

κ2

3β
ρm1

)
, (34)
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Note that the function ξ1 is not included into this system. It
can be defined from equation (12).
The sufficient stability conditions:

β > 0, H0 > 0,
ξ0

1 + ξ0
> 0. (35)

The fixed point is stable if either ξ0 > 0, or ξ0 < −1. Note that
the first case corresponds to Λ > 0, whereas the second case
corresponds to Λ < 0.
The observational consistency requires a positive value of the

cosmological constant. A positive effective cosmological con-
stant (vacuum energy density) is required for inflation models.
On the other hand, the string theory, the leading candidate

for a consistent theory of quantum gravity, predicts the exis-
tence of negative energy vacuum.
The possibility of the changing of the cosmological constant

sign in nonlocal gravity models is actively discussed:
T. Prokopec, arXiv:1105.0078
T. Biswas, T. Koivisto, A. Mazumdar, arXiv:1105.2636
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To analyse the stability of the obtained solutions at Λ = 0,
we transform the system of equation using new depended vari-
ables:

X = − η̇

4H
, W =

ξ̇

6Hf
, Y =

1− ξ

3f (η)
, Z =

κ2ρm
3H2f

(36)

and the independent variable N :
d

dN
≡ a

d

da
=

1

H

d

dt
.

Equations (15)–(17) are equivalent to the following equations
in terms of new variables:

dZ

dN
=

4

β
(X − 1)Z − 2

Z

H

dH

dN
,

dX

dN
= 3(1−X) +

1

H

(
3

2
−X

)
dH

dN
,

dW

dN
=

2

β
(1 + 2WX)− 3W +

1

H

(
1

β
−W

)
dH

dN
.
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To get the full system of equations add equation for dH
dN :(

8WX − 12W − 8

β
X +

12

β
− 2Z

)
1

H

dH

dN
−

− 12

β
XY − 24W + 24

(
1 +

1

β

)
XW − 20

β
X +

24

β
− 16

β
WX2 +

4

β
XZ − 4

β
Z = 0.

The de Sitter solution in terms of new variables corresponds
to the following fixed point:

W0 =
2

3β − 4
, X0 = 1, Y0 = 1, Z0 =

2(β − 2)

β
, H = H0.

We can say that the de Sitter solutions are stable with respect
to perturbations in the FRW metric at 4/3 < β 6 2.
Note that stability at β = 2, when Pm = 0 and ρm = 0 has been

proved in the paper Nojiri Sh., Odintsov S.D., 2008, Phys.
Lett. B 659, 821–826.
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Conclusion

• Nonlocal cosmological models are very popular.

• There are a lot of possibilities to include nonlocality in cos-
mological models.

• We hope that nonlocal cosmological models can be con-
structed as an effective action inspired by the string field
theory.

• In the nonlocal cosmological model, proposed by Nojiri and
Odintsov, the de Sitter solutions have been obtained in the
most general form and their stability in the FRW metric has
been analysed.

• The de Sitter solution is stable both for Λ > 0, and for Λ < 0.
So, it is possible that the cosmological constant is negative,
but due to nonlocality we get stable de Sitter solution.
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