

The XXth International Workshop High Energy Physics and Quantum Field Theory September 24 – October 1, 2011, Sochi, Russia

LHCb; inclusive bb-quarkonium production

Konstantin Belous

on behalf of LHCb Collaboration

Institute for High Energy Physics (IHEP), Protvino

Outlook:

- Reminder: LHCb detector and status
- Y(1S) production
- Sources of $\Upsilon(1S)$ and $\chi_b(1P)$ observation
- Quarkonia at LHCb
- Conclusion

- vertexing: PV resolution ${\approx}16~\mu m$ in X,Y and ${\approx}76~\mu m$ in Z proper time resolution 30÷50 fs
- Muon ID: $\varepsilon(\mu \rightarrow \mu) = 97\%$, mis-ID rate $(\pi \rightarrow \mu) = 1 \div 3\%$

25 September 2011

K.Belous, QFTHEP'2011

Status

- LHCb is in very good shape
 - 37 pb⁻¹ at $\sqrt{s} = 7$ TeV recorded in 2010
 - 800 pb⁻¹ already in 2011
 - Expect 1 fb⁻¹ at the end of the year
- Most of the quarkonia analyses use data of 2010

Motivation

- Many quarkonia states is discovered
- Nevertheless the production mechanism in pp-collision is not fully understood
- Large cross-section is expected at LHC High rate makes quarkonia central player for detector and software calibration
- Several theory models of production mechanism is around
 - Started with Color singlet (CSM)
 - under-predict, no polarization prediction
 - Extended to Color octet (COM) mechanisms, (NRQCD)
 better agreement for cross-sections; predicts transverse polarization, not confirmed by experiments
 - NLO CSM better describes cross-section and allow longitudinal polarization
 - Other models (Color evaporation (CEM), kt factorization, soft color interaction)
- New data from LHC experiments will help to resolve this issue

$\Upsilon(1S) \rightarrow \mu^+\mu^-$

 $\Upsilon(1S)$ production cross-section

LHCb-CONF-2011-016 Analysis performed on 2010 data

Υ(1S); Trigger and Event Selection

Trigger lines important for $\Upsilon \rightarrow \mu^+ \mu^-$ events

L0 Trigger	Single Muon	p _T > 1.4 GeV/c	
	Di-Muon	p _{T1} > 0.56 GeV/c, p _{T2} > 0.48 GeV/c	
HLT1 Trigger	Single Muon	Confirm L0 Single Muon and p _T > 1.8 GeV/c (<i>Prescaled</i>)	
	Di-Muon	Confirm L0 Di-Muon and m($\mu^+\mu^-$)>2.5 GeV/c ²	
HLT2 Trigger	Di-Muon	$m(\mu^+\mu^-)>2.9$ GeV/c ² or cuts on vertex and track quality	

 μ -tracks:

• well reconstructed tracks identified as muons in muon detector,

• $p_T > 1$ GeV/c,

•Track fit quality

Reconstructed Υ :

- vertex fit quality $Prob(\chi^2) > 0.5\%$
- mass window: 8 12 GeV/c²

Di-muon invariant mass spectra

$\frac{d\sigma(pp \to \Upsilon)}{dp_T dy} \cdot Br(\Upsilon \to \mu^+ \mu^-) = \frac{N^{fit}(p_T, y, \varepsilon_{tot})}{\int L dt \cdot \Delta p_T \cdot \Delta y}$

- N^{fit} number of candidates in the mass peak in each Δp_T , Δy bin, obtained from the fit and corrected for acceptance and efficiency
- ε_{tot} total efficiency (including acceptance)
- Δp_T , Δy bins of p_T and y
- $\int L dt$ integrated luminosity

Number of Υ candidates

3 Crystal Balls(CB) + exponential for background

Number of Y candidates

- Numbers of Υ(1S) candidates are extracted from Crystal Ball (CB) part of the fit with 3·CB+exponential.
- Only $\Upsilon(1S)$ considered:
 - Width and masses of $\Upsilon(2S)$ and $\Upsilon(3S)$ are fixed.
- Rapidity interval 2.0 < y < 2.5

Number of $\Upsilon(1S)$ candidates

	- F1 ·				
p_T	2.0 < y < 2.5	2.5 < y < 3.0	3.0 < y < 3.5	3.5 < y < 4.0	4.0 < y < 4.5
(GeV/c)					
0-1	228 ± 15	516 ± 23	437 ± 21	308 ± 18	88 ± 9
1-2	602 ± 25	1244 ± 35	1153 ± 34	766 ± 28	231 ± 15
2-3	863 ± 29	1553 ± 39	1358 ± 37	841 ± 29	254 ± 16
3-4	757 ± 28	1453 ± 38	1284 ± 36	824 ± 29	253 ± 16
4-5	809 ± 28	1268 ± 36	1102 ± 33	636 ± 25	182 ± 14
5-6	627 ± 25	1070 ± 33	845 ± 29	481 ± 22	157 ± 13
6-7	457 ± 21	774 ± 28	651 ± 26	452 ± 21	110 ± 11
7-8	398 ± 20	600 ± 24	546 ± 23	298 ± 17	91 ± 10
8-9	279 ± 17	482 ± 22	392 ± 20	208 ± 14	57 ± 8
9-10	249 ± 16	379 ± 19	271 ± 16	162 ± 13	31 ± 6
10-11	171 ± 13	253 ± 16	214 ± 15	104 ± 10	27 ± 5
11-12	160 ± 13	176 ± 13	139 ± 12	64 ± 8	20 ± 4
12-13	100 ± 10	139 ± 12	108 ± 10	74 ± 9	16 ± 4
13-14	70 ± 8	123 ± 11	87 ± 9	37 ± 6	5 ± 2
14-15	61 ± 8	78 ± 9	60 ± 8	27 ± 5	5 ± 2

25 September 2011

K.Belous, QFTHEP'2011

Efficiency

The efficiency ϵ_{tot} has been subdivided into three pieces:

$$\varepsilon_{\text{tot}} = N^{\Upsilon} (\text{accepted, reconstructed, triggered}) / N^{\Upsilon} (\text{generated}) =$$

$$= \varepsilon_{\text{acc}} \cdot \varepsilon_{\text{rec}} \cdot \varepsilon_{\text{trg}} =$$

$$= \frac{N^{\Upsilon} (\text{accepted})}{N^{\Upsilon} (\text{generated})} \cdot \frac{N^{\Upsilon} (\text{reconstructed})}{N^{\Upsilon} (\text{accepted})} \cdot \frac{N^{\Upsilon} (\text{triggered})}{N^{\Upsilon} (\text{reconstructed})}$$

For each p_T ,y range the following subsequent sub-samples and numbers of $\Upsilon(1S)$ in them are defined:

- N^{Υ} (generated) Total number of Υ (1S) generated
- N^r(accepted) Number of Υ generated inside LHCb acceptance (10-400 mrad)
- N^{Υ} (reconstructed) Number of Υ accepted, detected and reconstructed
- N^{Υ} (triggered) Number of triggered Υ

Reconstruction efficiency

Trigger efficiency

 N^{γ} detected, reconstructed, triggered in range

 N^{γ} detected, reconstructed in range

- Calculated in data for J/ ψ events as a function of $(p_T \mu 1 + p_T \mu 2)$ and y
- Systematic uncertainty is estimated using J/ψ and Υ(1S) Monte Carlo

 ${\cal E}_{
m trg}$

Systematic uncertainties

Source	Method	Value	
luminosity	luminosity for 2010 data	10% (the same for each bin)	
ϵ_{trg} calculation	difference MC – MC truth	2-67% (bin-by bin; big for some bins with low statistics)	
polarization on $\boldsymbol{\epsilon}_{\text{acc}}$	extreme polarization scenario	0-33% (bin-by-bin)	
polarization on $\epsilon_{\rm rec}$	extreme polarization scenario	0-21% (bin-by-bin)	
choice of fit function	different function	1%	
unknown p _T spectrum	p_T spectrum distribution	1%	
GEC (Global Event Cuts)	statistical uncertainty of data	2%	
ε(track quality)	difference data – MC	0.5% per track	
ε(track finding)	difference data – MC	4% per track	
vertexing	difference data – MC	1%	
Muon ID ε	tag and prob	1.1%	

Effect of polarization on acceptance

Effect of polarization on ϵ_{rec}

25 September 2011

K.Belous, QFTHEP'2011

Comparison with CMS

- CSM measurement as a function of p_T is higher, but it should be noted that CMS measure cross-section for |y|<2, while LHCb for 2.0<y<4.5.
- These two measurements supplement each other and in a good agreement.

Comparison with theory

Sources of $\Upsilon(1S)$

- Feed down from higher bottomonium states (Υ(2S), Υ(3S), χ_b, etc.) need to be understood in order to interpret the measurement of Υ(1S) production and study its polarization.
- CDF experiment analyzed the sources of Y(1S) production based on statistics of RUN I period (90 pb⁻¹, √s=1.8 TeV, 1994-1995 years). PRL 84 (2000) 2094, hep-ex/9910025. For:

$- pT(\Upsilon) > 8 GeV/c$		Source	Fraction in %
$- n(\Upsilon) < 0.7$	calculated	Direct	50.9±8.2±9.0
they obtain	35.3±9 events	χ _b (1P)	27.1±6.9±4.4
	28.5±12 events	χ _b (2P)	10.5±4.4±1.4
	from $\sigma(\Upsilon(2S))$ and Br($\Upsilon(2S) \rightarrow \Upsilon(1S) \pi^+\pi^-$	Ƴ (2S)	10.7+7.7-4.8
	from $\sigma(\Upsilon(3S))$ and Br($\Upsilon(3S) \rightarrow \Upsilon(1S) \pi^+\pi^-$	Ƴ (3S)	0.8+0.6-0.4

$\chi_b(1P)$ observation

χ b selection criteria:			
Υ(1S) mass band	9.36÷9.56 GeV/c ²		
Polar angle of μ^+ in Υ rest frame	$ \cos\theta_{\mu}^{*} < 0.7$		
p _T of photon	p _T (γ) > 700 MeV/c		
Polar angle of γ in χ_b rest frame	$\cos\theta_{\gamma}^{*} > 0$		
p_{T} of γ_{h} candidate	$p_{T}(\gamma_{h}) > 7 \text{ GeV/c}$		

- A clear signal for $\chi_b(1P)$ production is seen.
- No hint for χ_b(2P) signal (ΔM≈800 MeV/c²).
- Cannot do a separation of the states $(\chi_{b0}(1P), \chi_{b1}(1P), \chi_{b2}(1P))$ yet.
- Gaussian (for signal) + smooth background function is used for fitting to obtain the number of signal candidates.

Μ(μμγ)-**Μ(**μμ) (GeV/c²)

Quarkonia at LHCb

- Prompt quarkonia production probe NRQCD and help to understand colorsinglet and color-octet contributions.
- LHCb has already a lot of interesting results:
- Y(1S) production cross-section LHCb-CONF-2011-016
- J/ ψ production cross-section Eur.Phys.J C71 (2011) 1645
- Double J/ψ production LHCb-CONF-2011-009 arXiv: hep-ph/1109.0963v1
- ψ(2S) production cross-section LHCb-CONF-2011-026
- Inclusive X(3872) production LHCb-CONF-2011-043

J/ψ production cross-section

Performed on first data 5.2 pb⁻¹ with $J/\psi \rightarrow \mu\mu$

Eur. Phys. J. C71 (2011) 1645

- Measured in bins of
 rapidity 2.0<y<4.5 (5 bins)
 - $-p_T 0 < p_T < 15 \text{ GeV/c} (15 \text{ bins})$
- Prompt and J/ψ from b are subdivided using proper time
- σ(prompt)=10.52±0.04±1.40^{+1.64} μb
 the last error due to unknown polarization
- $\sigma(\text{from } \mathbf{b})=1.14\pm0.01\pm0.16 \ \mu\text{b}$

J/ψ production cross-section

Double J/ ψ production

ψ (2S) production

LHCb-CONF-2011-026 Analysis performed on 2010 data

- Theoretically interesting state. No feed down contribution.
- Differential cross-sections measured: $\psi(2S) \rightarrow \mu^{+}\mu^{-}$ $\sigma(0 < p_{T} < 12 \text{ GeV/c}; 2 < y < 4.5) = 1.88 \pm 0.02 \pm 0.31^{-0.48} \mu b$ $\psi(2S) \rightarrow J/\psi \pi^{+}\pi^{-}$ $\sigma(3 < p_{T} < 16 \text{ GeV/c}; 2 < y < 4.5) = 0.62 \pm 0.04 \pm 0.12^{-0.14} \mu b$
- Good agreement between two results

25 September 2011

X(3872) production and mass

LHCb-CONF-2011-021 LHCb-CONF-2011-043 Analysis performed on 2010 data

 $\int L = 34.7 \text{ pb}^{-1}$

- Exotic meson discovered by Belle in 2003 in b meson decays Nature still uncertain: most popular model is molecular state with J^{PC} = 1⁺⁺
- $M_{X(3872)} = 3871.96 \pm 0.46 \pm 0.10 \text{ MeV/c}^2$
- $\sigma_{X(3872)} \times Br(X(3872) \rightarrow J/\psi \pi^+\pi^-) =$ = 4.74 ± 1.10 ± 1.01 nb

χ_{c2}/χ_{c1} cross-section ratio

 converted γ (e⁺e⁻ clusters) and not converted γ (γ cluster) treated separately $\frac{Br(\chi_{c1} \rightarrow J/\psi\gamma)}{Br(\chi_{c2} \rightarrow J/\psi\gamma)} = \frac{(34.4 \pm 1.5)\%}{(19.5 \pm 0.8)\%}$

• Efficiencies cancel out, lower systematic uncertainty

χ_{c2}/χ_{c1} cross-section ratio

- Internal error bars: statistical error from the yield extraction
- External error bars: systematic uncertainty included:
 - decay branching fractions
 - stability of fit
 - MC statistics
- Shaded area (black): maximum effect of unknown polarization
- **Shaded area** theory predictions:
 - (red): CSM
 - (blue): NLO NRQCD

Conclusion

- LHCb performs many analyses of quarkonium states using 2010 collected data
 - Υ(1S)
 - J/ψ (separately prompt and non-prompt)
 - double J/ $\!\psi$
 - ψ(2S)
 - χ_{c2} to χ_{c1} cross-section ratio
- These results are useful to test theoretical models
- Good agreement of cross-section (J/ ψ , ψ (2S), Υ (1S)) measurements with NRQCD
- The experimental error is lower than the theoretical one
- LHCb collect high statistics in 2011
 - more than 800 pb⁻¹ collected do far
 - -1 fb⁻¹ expected at the end of 2011
 - a lot of new results expected in the future