Bifurcation sets in extensions of Higgs Potential

M.V. Dolgopolov (Samara SU) M.N. Dubinin (SINP MSU) E.N. Rykova (SSU)

Outline

- One-dimensional picture of T evolution
- Two-dimensional picture (v1(T), v2(T))
- Bifurcation sets in the catastrophe theory

M. Dolgopolov, M. Dubinin, E. Rykova Threshold corrections to the MSSM finitetemperature Higgs potential. *Journal of Modern Physics, 2011, 2, 301-322*; Electroweak phase transition beyond the Standard Model. *QFTHEP2010 Proc.*; *Physics of Atomic Nuclei, 2010, Vol. 73, No. 6, pp. 1032–1036*

Sochi, Russia, QFTHEP – 2011, September 26

The absence of antimatter in the Universe, a small ratio of the observed number of baryons to the observed number of photons and the absence of light CP-even Higgs boson signal at LEP2 and Tevatron energies lay a specific claims to models of particle physics

- Two problems in the Standard Model
 - First order phase transition requires $m_h < 50 \text{ GeV}$
 - Need new sources of CP violation
- Supersymmetric Models
 - 1st order phase transition is possible
 - New CP violating phases

One-dimensional picture. The effective high temperature MSSM potential

$$\varphi^2 = V_1^2 + V_2^2, \quad \text{tg } \beta = V_2 / V_1$$
$$V_{\text{eff}}(\phi, T) \simeq \left[a(\theta) T^2 - b(\theta) \right] \varphi^2 - ET \varphi^3 + \frac{1}{4} \lambda_T(\theta) \varphi^4$$

where

$$\begin{split} a(\theta) &= \frac{3g^2 + {g'}^2}{16} + \frac{h_t^2}{4} \sin^2 \theta ,\\ b(\theta) &= \frac{m_Z^2}{2} \cos 2\beta \cos 2\theta - m_A^2 \sin^2(\beta - \theta) + \frac{3h_t^2}{8\pi^2} \sin^2 \theta \, m_t^2 \left(1 + \log \frac{\tilde{m}^2}{m_t^2}\right) ,\\ E &= \frac{2}{3} \frac{\sqrt{2}}{16\pi} \left[2g^3 + (g^2 + {g'}^2)^{3/2} \right] ,\\ \lambda_T(\theta) &= \frac{1}{2} (g^2 + {g'}^2) \cos^2 2\theta + \frac{3h_t^4}{4\pi^2} \sin^4 \theta \left(\log \frac{\tilde{m}^2}{T^2} - 1.14\right) . \end{split}$$

A.Brignole, J.Espinosa, M.Quiros, F.Zwirner, PL B324 (1994) 181

From D.Gorbunov, V.Rubakov, solid lines — numerical calculation, dashed — high T expansion, for different T and mH

MODEL [QFTHEP'2003, 2004]

THDM: Fields

Georgi: A Model Of Soft CP Violation. 1978 Lee: A Theory Of Spontaneous T Violation. 1973

$$\begin{split} \Phi_1 &= \begin{pmatrix} \phi_1^+(x)\\ \phi_1^0(x) \end{pmatrix} = \begin{pmatrix} -i\omega_1^+\\ \frac{1}{\sqrt{2}}(v_1 + \eta_1 + i\chi_1) \end{pmatrix},\\ \Phi_2 &= e^{i\xi} \begin{pmatrix} \phi_2^+(x)\\ \phi_2^0(x) \end{pmatrix} = e^{i\xi} \begin{pmatrix} -i\omega_2^+\\ \frac{1}{\sqrt{2}}(v_2 e^{i\zeta} + \eta_2 + i\chi_2) \end{pmatrix}\\ \langle \Phi_1 \rangle &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_1 \end{pmatrix}, \qquad \langle \Phi_2 \rangle = \frac{e^{i\xi}}{\sqrt{2}} \begin{pmatrix} 0\\ v_2 e^{i\zeta} \end{pmatrix} \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_2 e^{i\theta} \end{pmatrix}.\\ \mathrm{tg}\,\beta &= \frac{v_2}{v_1}, \qquad v^2 \equiv v_1^2 + v_2^2 = (246 \text{ GeV})^2. \end{split}$$

Ilya F. Ginzburg, M. Krawczyk,

Symmetries of two Higgs doublet model and CP violation. Phys.Rev.D72,2005. Akhmetzyanova E.N., *D M.V.*, Dubinin M.N.

Higgs Bosons in the Two-Doublet Model with CP Violation Phys.Rev.D71.2005.

Violation of CP invariance in the two-doublet Higgs sector of the MSSM. Phys.Part.Nucl.37,2006.

Scalar sector for MSSM

The main contribution to self-couplings due to Yukawa 3rd generation couplings.

The corresponding potential with CPV sources

$$\begin{split} \mathcal{V}^{0} &= \mathcal{V}_{M} + \mathcal{V}_{\Gamma} + \mathcal{V}_{\Lambda} + \mathcal{V}_{\widetilde{Q}} ,\\ \mathcal{V}_{M} &= (-1)^{i+j} m_{ij}^{2} \Phi_{i}^{\dagger} \Phi_{j} + M_{\widetilde{Q}}^{2} \left(\widetilde{Q}^{\dagger} \widetilde{Q} \right) + M_{\widetilde{U}}^{2} \widetilde{U}^{*} \widetilde{U} + M_{\widetilde{D}}^{2} \widetilde{D}^{*} \widetilde{D} ,\\ \mathcal{V}_{\Gamma} &= \Gamma_{i}^{D} \left(\Phi_{i}^{\dagger} \widetilde{Q} \right) \widetilde{D} + \Gamma_{i}^{U} \left(i \Phi_{i}^{T} \sigma_{2} \widetilde{Q} \right) \widetilde{U} + \Gamma_{i}^{D} \left(\widetilde{Q}^{\dagger} \Phi_{i} \right) \widetilde{D}^{*} - \Gamma_{i}^{U} \left(i \widetilde{Q}^{\dagger} \sigma_{2} \Phi_{i}^{*} \right) \widetilde{U}^{*} \\ \mathcal{V}_{\Lambda} &= \Lambda_{ik}^{jl} \left(\Phi_{i}^{\dagger} \Phi_{j} \right) \left(\Phi_{k}^{\dagger} \Phi_{l} \right) + \left(\Phi_{i}^{\dagger} \Phi_{j} \right) \left[\Lambda_{ij}^{Q} \left(\widetilde{Q}^{\dagger} \widetilde{Q} \right) + \Lambda_{ij}^{U} \widetilde{U}^{*} \widetilde{U} + \Lambda_{ij}^{D} \widetilde{D}^{*} \widetilde{D} \right] + \\ &+ \overline{\Lambda}_{ij}^{Q} \left(\Phi_{i}^{\dagger} \widetilde{Q} \right) \left(\widetilde{Q}^{\dagger} \Phi_{j} \right) + \frac{1}{2} \left[\Lambda \epsilon_{ij} \left(i \Phi_{i}^{T} \sigma_{2} \Phi_{j} \right) \widetilde{D}^{*} \widetilde{U} + \mathfrak{d} c \right] , \quad i, j, \, k, l = 1, 2 \\ &\Gamma_{\{1; \, 2\}}^{U} &= h_{U} \left\{ -\mu^{*}; A_{U} \right\}, \qquad \Gamma_{\{1; \, 2\}}^{D} &= h_{D} \left\{ A_{D} ; -\mu^{*} \right\} \end{split}$$

Transformation of SU(2) eigenstates to mass eigenstates

$$\begin{split} U_{eff}(\Phi_1, \Phi_2) &= -\mu_1^2(\Phi_1^{\dagger}\Phi_1) - \mu_2^2(\Phi_2^{\dagger}\Phi_2) - \mu_{12}^2(\Phi_1^{\dagger}\Phi_2) - \mu_{12}^2(\Phi_2^{\dagger}\Phi_1) + \lambda_1(\Phi_1^{\dagger}\Phi_1)^2 + \lambda_2(\Phi_2^{\dagger}\Phi_2)^2 \\ &+ \lambda_3(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_2) + \lambda_4(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1) + \frac{\lambda_5}{2}(\Phi_1^{\dagger}\Phi_2)(\Phi_1^{\dagger}\Phi_2) + \frac{\lambda_5}{2}(\Phi_2^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_1) + \\ &+ \lambda_6(\Phi_1^{\dagger}\Phi_1)(\Phi_1^{\dagger}\Phi_2) + \lambda_6(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_1) + \lambda_7(\Phi_2^{\dagger}\Phi_2)(\Phi_1^{\dagger}\Phi_2) + \lambda_7(\Phi_2^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1) \end{split}$$

 $U_{eff}(\Phi_1, \Phi_2) \Longrightarrow \frac{m_h^2}{2}(hh) + \frac{m_H^2}{2}(HH) + \frac{m_A^2}{2}(AA) + m_{H^{\pm}}^2(H^+H^-) + h, H, A, H^{\pm} \quad \text{interaction terms}$ $(s_{\alpha} = \sin\alpha, c_{\beta} = \cos\beta \text{ etc.})$

$$\varphi_{1} = \begin{pmatrix} -i*(-H^{+}s_{\beta} + G^{+}c_{\beta}) \\ \frac{1}{\sqrt{2}}[v_{1} + Hc_{\alpha} - hs_{\alpha} + i*(A^{0}c_{\beta} + G^{'}s_{\beta})] \end{pmatrix}$$
$$\varphi_{2} = e^{i\xi} \begin{pmatrix} -i*(H^{+}c_{\beta} + G^{+}s_{\beta}) \\ \frac{1}{\sqrt{2}}[v_{2}e^{i\zeta} + Hs_{\alpha} + hc_{\alpha} + i*(-A^{0}s_{\beta} + G^{'}c_{\beta})] \end{pmatrix}$$

$$tg2\alpha = \frac{s_{2\beta}(m_A^2 + m_Z^2) + v^2((\Delta\bar{\lambda}_3 + \Delta\bar{\lambda}_4)s_{2\beta} + 2c_\beta^2\Delta\operatorname{Re}\bar{\lambda}_6 + 2s_\beta^2\operatorname{Re}\Delta\bar{\lambda}_7)}{c_{2\beta}(m_A^2 - m_Z^2) + v^2(\Delta\bar{\lambda}_1c_\beta^2 - \Delta\bar{\lambda}_2s_\beta^2 - \operatorname{Re}\Delta\bar{\lambda}_5c_{2\beta} + (\operatorname{Re}\Delta\bar{\lambda}_6 - \operatorname{Re}\Delta\bar{\lambda}_7)s_{2\beta})}$$

lead to the nonlinear equations for effective parameters lambda

$$\begin{split} \lambda_{1} &= \quad \frac{1}{2v^{2}} [(\frac{s_{\alpha}}{c_{\beta}})^{2} m_{h}^{2} + (\frac{c_{\alpha}}{c_{\beta}})^{2} m_{H}^{2} - \frac{s_{\beta}}{c_{\beta}^{3}} \operatorname{Re} \mu_{12}^{2}] + \frac{1}{4} (\operatorname{Re} \lambda_{7} \operatorname{tg}^{3} \beta - 3 \operatorname{Re} \lambda_{6} \operatorname{tg} \beta), \\ \lambda_{2} &= \quad \frac{1}{2v^{2}} [(\frac{c_{\alpha}}{s_{\beta}})^{2} m_{h}^{2} + (\frac{s_{\alpha}}{s_{\beta}})^{2} m_{H}^{2} - \frac{c_{\beta}}{s_{\beta}^{3}} \operatorname{Re} \mu_{12}^{2}] + \frac{1}{4} (\operatorname{Re} \lambda_{6} \operatorname{ctg}^{3} \beta - 3 \operatorname{Re} \lambda_{7} \operatorname{ctg} \beta), \\ \lambda_{3} &= \quad \frac{1}{v^{2}} [2m_{H^{\pm}}^{2} - \frac{\operatorname{Re} \mu_{12}^{2}}{s_{\beta} c_{\beta}} + \frac{s_{2\alpha}}{s_{2\beta}} (m_{H}^{2} - m_{h}^{2})] - \frac{\operatorname{Re} \lambda_{6}}{2} \operatorname{ctg} \beta - \frac{\operatorname{Re} \lambda_{7}}{2} \operatorname{tg} \beta, \\ \lambda_{4} &= \quad \frac{1}{v^{2}} (\frac{\operatorname{Re} \mu_{12}^{2}}{s_{\beta} c_{\beta}} + m_{A}^{2} - 2m_{H^{\pm}}^{2}) - \frac{\operatorname{Re} \lambda_{6}}{2} \operatorname{ctg} \beta - \frac{\operatorname{Re} \lambda_{7}}{2} \operatorname{tg} \beta, \\ \operatorname{Re} \lambda_{5} &= \quad \frac{1}{v^{2}} (\frac{\operatorname{Re} \mu_{12}^{2}}{s_{\beta} c_{\beta}} - m_{A}^{2}) - \frac{\operatorname{Re} \lambda_{6}}{2} \operatorname{ctg} \beta - \frac{\operatorname{Re} \lambda_{7}}{2} \operatorname{tg} \beta, \\ \end{array}$$

M.Dubinin., A. Semenov, Eur.J.Phys. C28 (2003) 223 M.D., M.Dubinin., E.Rykova, Phys.Rev. D71 (2005) 075008

and the minimization conditions for dimension 2 parameters mu

$$egin{aligned} &\mu_1^2=&\lambda_1v_1^2+(\lambda_3+\lambda_4+ ext{Re}\lambda_5)rac{v_2^2}{2}- ext{Re}\mu_{12}^2 ext{tg}eta+rac{v^2s_eta^2}{2}(3 ext{Re}\lambda_6 ext{ctg}eta+ ext{Re}\lambda_7 ext{tg}eta), \ &\mu_2^2=&\lambda_2v_2^2+(\lambda_3+\lambda_4+ ext{Re}\lambda_5)rac{v_1^2}{2}- ext{Re}\mu_{12}^2 ext{ctg}eta+rac{v^2c_eta}{2}(ext{Re}\lambda_6 ext{ctg}eta+ ext{SRe}\lambda_7 ext{tg}eta). \end{aligned}$$

(forms of contribitions) In the MSSM, we calculate the 1-

$$\begin{split} &\Delta\lambda_1^{llr} = 3h_t^4 |\mu|^4 I_2[m_Q,m_U] + 3h_b^4 |A_b|^4 I_2[m_Q,m_D] + \\ &+ h_t^2 |\mu|^2 (-\frac{g_1^2 - 3g_2^2}{2} I_1[m_Q,m_U] + 2g_1^2 I_1[m_U,m_Q]) \end{split}$$

$$\begin{split} \Delta\lambda_{2}^{lbr} &= 3h_{t}^{4} |A_{t}|^{4} I_{2}[m_{Q}, m_{U}] + 3h_{b}^{4} |\mu|^{4} I_{2}[m_{Q}, m_{D}] + \\ &+ h_{b}^{2} |\mu|^{2} (\frac{g_{1}^{2} + 3g_{2}^{2}}{2} I_{1}[m_{Q}, m_{D}] + g_{1}^{2} I_{1}[m_{D}, m_{Q}]) + \\ &+ h_{t}^{2} |A_{t}|^{2} (\frac{12h_{t}^{2} + g_{1}^{2} - 3g_{2}^{2}}{2} I_{1}[m_{Q}, m_{U}] + (6h_{t}^{2} - 2g_{1}^{2}) I_{1}[m_{U}, m_{Q}]) + \\ &+ h_{t}^{2} |A_{t}|^{2} (\frac{12h_{t}^{2} + g_{1}^{2} - 3g_{2}^{2}}{2} I_{1}[m_{Q}, m_{U}] + (6h_{t}^{2} - 2g_{1}^{2}) I_{1}[m_{U}, m_{Q}]) + \\ &+ h_{t}^{2} |A_{t}|^{2} (\frac{3g_{2}^{2} + g_{1}^{2}}{12} + |A_{t}|^{2} \frac{12h_{t}^{2} - g_{1}^{2} - 3g_{2}^{2}}{12}) I_{1}[m_{Q}, m_{U}] + \\ &+ (|\mu|^{2} \frac{3h_{t}^{2} - g_{1}^{2}}{3} + |A_{t}|^{2} \frac{g_{1}^{2}}{3}) I_{1}[m_{U}, m_{Q}]) + \\ &+ (|\mu|^{2} \frac{3h_{t}^{2} - g_{1}^{2}}{12} + |A_{b}|^{2} \frac{12h_{t}^{2} + g_{1}^{2} - 3g_{2}^{2}}{4}) I_{1}[m_{Q}, m_{D}] + \\ &+ (|\mu|^{2} \frac{6h_{b}^{2} - g_{1}^{2}}{12} + |A_{b}|^{2} \frac{2g_{1}^{2}}{4} + g_{1}^{2} - 3g_{2}^{2}}) I_{1}[m_{Q}, m_{D}] + \\ &+ h_{t}^{2} |h_{t}^{2}| A_{t}^{2} I_{2}[m_{Q}, m_{U}] + h_{b}^{2} |\mu|^{2} |A_{b}|^{2} I_{2}[m_{Q}, m_{D}] + \\ &+ h_{t}^{2} h_{b}^{2} (2(A_{t}A_{b} - |\mu|^{2}) I_{3}[m_{Q}, m_{U}, m_{D}] + (|\mu|^{4} + |A_{t}|^{2}|A_{b}|^{2} I_{2}[m_{Q}, m_{D}] + \\ &+ h_{t}^{2} h_{b}^{2} (2(A_{t}A_{b} - |\mu|^{2}) I_{3}[m_{Q}, m_{U}, m_{D}] + (|\mu|^{4} + |A_{t}|^{2}|A_{b}|^{2} I_{2}[m_{Q}, m_{D}] + \\ &+ h_{t}^{2} (h_{b}^{2} - g_{1}^{2} - |\mu|^{2} I_{4} I^{2} I_{2}[m_{Q}, m_{U}] + 6h_{b}^{4} |\mu|^{2} |A_{b}|^{2} I_{2}[m_{Q}, m_{D}] + \\ &+ h_{t}^{2} ((|\mu|^{2} \frac{12h_{t}^{2} + g_{1}^{2} - 3g_{2}^{2}}{4} - |A_{t}|^{2} \frac{g_{1}^{2} - 3g_{2}^{2}}{4}) I_{1}[m_{Q}, m_{U}] + \\ &+ h_{b}^{2} ((|\mu|^{2} \frac{12h_{t}^{2} + g_{1}^{2} + 3g_{2}^{2}}{4} - |A_{b}|^{2} \frac{g_{1}^{2} - 3g_{2}^{2}}{4}) I_{1}[m_{Q}, m_{D}] + \\ &+ h_{b}^{2} ((|\mu|^{2} \frac{12h_{t}^{2} + g_{1}^{2} + 3g_{2}^{2}}{4} - |A_{b}|^{2} \frac{g_{1}^{2} - 3g_{2}^{2}}{4}) I_{1}[m_{Q}, m_{D}] + \\ &+ h_{b}^{2} ((|\mu|^{2} \frac{12h_{t}^{2} - 2h_{t}^{2} + g_{1}^{2} + 3g_{2}^{2}}{4} - |A_{b}|^{2} \frac{g_{1}^{2} - 3g_{2}^{2}}{4}) I_{1}[m_{Q}, m_{D}] +$$

In the MSSM we calculate the 1-loop FT corrections from the squarks-Higgs bosons sector, reconstruct the effective two-Higgs-doublet potential and study possibilities of the EWPT in the full MSSM ($m_{H\pm}$, $tg\beta$, $A_{t,b}$, μ , m_Q , m_U , m_D) parameter space.

$$I_1[M_a, M_b] = \frac{T}{2M_a} \frac{\partial}{\partial M_a} I_0 = -\frac{1}{64\pi^4 T^2} \int_0^1 dx \ x \ \zeta(2, \frac{3}{2}, M^2),$$
$$I_2[M_a, M_b] = -\frac{1}{2M_b} \frac{\partial}{\partial M_b} (-I_1) = \frac{3}{256\pi^8 T^4} \int_0^1 dx \ x \ (1-x) \ \zeta(2, \frac{5}{2}, M^2).$$

$$\zeta(u,s,t) = \sum_{n=1}^{\infty} \frac{1}{(n^u + t)^s}.$$

Hurwitz zeta-function

 $\Delta \lambda_5 = 3h_t^4 \mu^2 A^2 I_2[m_Q, m_t] + 3h_b^4 \mu^2 A^2 I_2[m_Q, m_b]$

$$\begin{split} \Delta\lambda_6 &= -3h_t^4 \mu A |\mu|^2 I_2[m_Q, m_t] - 3h_b^4 \mu A |A|^2 I_2[m_Q, m_b] + \\ &+ h_t^2 \mu A (\frac{g_1^2 - 3g_2^2}{4} I_1[m_Q, m_t] - g_1^2 I_1[m_t, m_Q]) + \\ &+ h_b^2 \mu A (\frac{-12h_b^2 + g_1^2 + 3g_2^2}{4} I_1[m_Q, m_b] - \frac{6h_b^2 - g_1^2}{2} I_1[m_b, m_Q]) \\ \Delta\lambda_7 &= -3h_t^4 \mu A |A|^2 I_2[m_Q, m_t] - 3h_b^4 \mu A |\mu|^2 I_2[m_Q, m_b] + \\ &+ h_b^2 \mu A (-\frac{g_1^2 + 3g_2^2}{4} I_1[m_Q, m_b] - \frac{g_1^2}{2} I_1[m_b, m_Q]) + \end{split}$$

 $- + h_t^2 \mu A (\frac{12h_t^2 + g_1^2 - 3g_2^2}{4} I_1[m_Q, m_t] - (3h_t^2 - g_1^2) I_1[m_t, m_Q])$

The surface of minima for zero-temperature two-doublet Higgs potential at the scale M_{SUSY}

Two-dimensional effective potential in the v1, v2 plane (in red, U=0 surface in green colour)

Effective potential at finite temperature

$$v_1(T) = v(T) \cos \overline{\beta}(T), \quad v_2(T) = v(T) \sin \overline{\beta}(T)$$

Mass term

$$U_{mass}(v,\bar{\beta}) = -\frac{v^2}{2}(\mu_1^2 \cos^2\bar{\beta} + \mu_2^2 \sin^2\bar{\beta}) - \frac{v^2}{2}\mu_{12}^2 \sin 2\bar{\beta}$$

Critical temperature determination

$$\begin{split} \partial U_{mass} / \partial v &= 0 \quad 1/v \ \partial U_{mass} / \partial \bar{\beta} = 0 \\ \texttt{tg} 2 \bar{\beta} &= \frac{2\mu_{12}^2}{\mu_1^2 - \mu_2^2}, \quad (\mu_1^2 \mu_2^2 - \mu_{12}^4) [(\mu_1^2 - \mu_2^2)^2 + 4\mu_{12}^4] = 0 \\ \mu_1^2 \mu_2^2 &= \mu_{12}^4 \end{split}$$

Evolution of the critical parameters

Evolution parameters

Control parameters

 $U_{eff} (V_1(T), V_2(T) | \lambda_1(T), \lambda_2(T), \lambda_3(T), \lambda_4(T), \lambda_5(T), \lambda_6(T), \lambda_7(T))$

Implicitly $\lambda_{1...7}$ (T | m_{ν} , m_{ρ} , m_{Q} , A_{t} , A_{b} , μ)

▼

First order phase transition with Shaposhnikov criteria vc / Tc > 1 Where is does take place?

Higgs boson masses mh(T), mH(T), mA(T) which are always positively defined and large enough at low T

Mixing angles α , β which respect some phenomenological constraintsat low T

General formalism is known as the theory of catastrophes

$$U(v_1, v_2) = -\frac{\mu_1^2}{2}v_1^2 - \frac{\mu_2^2}{2}v_2^2 - \mu_{12}^2v_1v_2 + \frac{\lambda_1}{4}v_1^4 + \frac{\lambda_2}{4}v_2^4 + \frac{\lambda_{345}}{4}v_1^2v_2^2 + \frac{\lambda_6}{2}v_1^3v_2 + \frac{\lambda_7}{2}v_1v_2^3 + \frac{\lambda_7}{2}v_1v_$$

 $\nabla U(v_1, v_2) = 0$ Isolated (nondegenerate) critical points

det $\partial U/\partial v_i \partial v_j = 0$ Nonisolated (degenerate) critical points. Defines «bifurcation sets» as zero det of the equilibrium matrix (Hessian)

$$det \left\| \begin{array}{cc} 2\lambda_1 v_1^2 + \mu_{12}^2 \frac{v_2}{v_1} & -\mu_{12}^2 + \lambda_{345} v_1 v_2 \\ -\mu_{12}^2 + \lambda_{345} v_1 v_2 & 2\lambda_2 v_2^2 + \mu_{12}^2 \frac{v_1}{v_2} \end{array} \right\| = 0$$

V.I. Arnold, Critical points of smooth functions and their canonical forms, Uspekhi Math. Nauk (USSR), 30 (1975) 3

R. Thom, Structural stability and morphogenesis, Reading, Benjamin, 1975

M. Morse, The critical points of a function of n variables, Trans. Am. Math. Soc., 33 (1931) 72

The system of two nonlinear equations for v_1, v_2

$$\begin{split} \lambda_1 v_1^3 + \frac{\lambda_{345}}{2} v_1 v_2^2 - \mu_1^2 v_1 - \mu_{12}^2 v_2 &= 0 \\ \lambda_2 v_2^3 + \frac{\lambda_{345}}{2} v_1^2 v_2 - \mu_2^2 v_2 - \mu_{12}^2 v_1 &= 0 \end{split}$$

can be factorized by the rotation in the v_1, v_2 plane

$$\begin{split} v_1 &= \bar{v}_1 \cos\bar{\beta} - \bar{v}_2 \sin\bar{\beta}, \qquad v_2 = \bar{v}_1 \sin\bar{\beta} + \bar{v}_2 \cos\bar{\beta} \\ \\ \bar{v}_1 (\lambda_1 \bar{v}_1^2 + \frac{\lambda_{345}}{2} \bar{v}_2^2 - \bar{\mu}_1^2) &= 0 \\ \\ \bar{v}_2 (\lambda_2 \bar{v}_2^2 + \frac{\lambda_{345}}{2} \bar{v}_1^2 - \bar{\mu}_2^2) &= 0 \end{split}$$

The four bifurcation sets for U(v1,v2 | λ 1, λ 2, λ 3, λ 4, λ 5)

$$\begin{array}{l} \begin{array}{l} \left(1\right) \lambda_{1}\bar{v}_{1}^{2} + \frac{\lambda_{345}}{2}\bar{v}_{2}^{2} - \bar{\mu}_{1}^{2} = 0 \text{ and } \lambda_{2}\bar{v}_{2}^{2} + \frac{\lambda_{345}}{2}\bar{v}_{1}^{2} - \bar{\mu}_{2}^{2} = 0, U_{ij}(v_{1}, v_{2}) = \left\|\begin{array}{c} 2\lambda_{1}\bar{v}_{1}^{2} & \lambda_{345}\bar{v}_{1}\bar{v}_{2} \\ \lambda_{345}\bar{v}_{1}\bar{v}_{2} & 2\lambda_{2}\bar{v}_{2}^{2} \end{array}\right\| \\ (2) \lambda_{1}\bar{v}_{1}^{2} - \bar{\mu}_{1}^{2} = 0 \text{ and } \bar{v}_{2} = 0, U_{ij}(v_{1}, v_{2}) = \left\|\begin{array}{c} 2\lambda_{1}\bar{v}_{1}^{2} & 0 \\ 0 & -\bar{\mu}_{2}^{2} + \frac{\lambda_{345}}{2}\bar{v}_{1}^{2} \end{array}\right\| \\ (3) \bar{v}_{1} = 0 \text{ and } \lambda_{2}\bar{v}_{2}^{2} - \bar{\mu}_{2}^{2} = 0, U_{ij}(v_{1}, v_{2}) = \left\|\begin{array}{c} -\mu_{1}^{2} + \frac{\lambda_{345}}{2}\bar{v}_{2}^{2} & 0 \\ 0 & 2\lambda_{2}\bar{v}_{2}^{2} \end{array}\right\| \\ (4) \bar{v}_{1} = 0 \text{ and } \bar{v}_{2} = 0, U_{ij}(v_{1}, v_{2}) = - \left\|\begin{array}{c} \bar{\mu}_{1}^{2} & 0 \\ 0 & \bar{\mu}_{2}^{2} \end{array}\right\| \\ \text{Set (1) is an elementary Sylvester's criteria} \quad \lambda_{1} < 0, \quad \lambda_{2} < 0, \quad \lambda_{1}\lambda_{2} - \frac{\lambda_{345}^{2}}{2} < 0 \\ \end{array}\right\|$$

4

Set (4) also elementary, sets (2) and (3) give

$$(4\lambda_1 + \lambda_{345})v_1^4 + (4\lambda_2 + \lambda_{345})v_2^4 + (6\lambda_{345} - 2\lambda_1 - 2\lambda_2)v_1^2v_2^2 = 0$$

Ограничения на параметры модели

Ограничения на параметры модели

Ограничения на параметры модели

Four bifurcation sets are found in the general THDM then projected onto the MSSM parameter space.

On the base of:

• Temperature MSSM one-loop effective Higgs potential with threshold corrections.

 Temperature evolution of masses and mixings from high T down to zero is explicitly obtained. The regions of MSSM parameter space where the mass(T) eigenstates exist are separated.

Perspectives

- The topology analysis of extended Higgs potentials, nonlinear transformations
- viable models: THDM, MSSM, split supersymmetry Singlet models: Next-to-MSSM many possibilities
- Electroweak baryogenesis is still viable in extended Higgs sectors
- It would offer the possibiliy to compute the baryon asymmetry from parameters measured in collider experiments
- If the result would match the observations, we could claim to understand the early universe up to electroweak temperature
- Strong constraints on CP phases from EDM's