Threshold corrections to the MSSM finitetemperature Higgs potential

E.N. Rykova (Samara SU) M.V. Dolgopolov (Samara SU), M.N. Dubinin (INP MSU)

Sochi, Russia, QFTHEP - 2011

Outline

- SM and phase transitions
- Minimal Supersymmetric Standard Model
- Effective THDM potential with explicit CP violation
- Integration and summation method
- Threshold corrections from the triangle and box diagrams
- The logarithmic corrections
- The wave-function renormalization correction
- Higgs bosons masses
- Conclusions

SM and phase transitions

$$U(\varphi) = -\frac{1}{2}\mu^2 \varphi^2 + \frac{1}{4}\lambda \varphi^4$$

$$v(0) = 0 \text{ and } v^2(T) = \frac{\mu^2}{\lambda} - \frac{T^2}{4}$$

$$T_c = \frac{2\mu}{\sqrt{\lambda}} = \frac{2v(0)}{m_h^2}$$

$$m_h^2 = -\frac{\mu^2}{\lambda} + \frac{\lambda T^2}{4}$$

Minimal Supersymmetric Standard Model

$$V_{eff}(v,T) = V_0(v_1,v_2,0) + V_1(m(v),0) + V_1(T) + V_{ring}(T),$$

- $V_0(v_1, v_2, 0)$ the tree-level MSSM two-doublet potential at the
- SUSY scale $V_1(m(v),0)$ the (non-temperature) one-loop resumed Colomon-Weinberg term, dominated by sto Coleman-Weinberg term, dominated by stop and sbottom contributions

 $V_1(T)$ - the one-loop temperature term

 $V_{ring}(T)$ - the correction of resummed leading infrared contribution from multi-loop ring (or daisy) diagrams

4

 g_2 and g_1 , $\lambda_{1,2,3,4}$ $\tan \beta = v_2/v_1$ and $m_{\mu^{\pm}}$ $A_{t,b}, \mu, m_O, m_U, m_D$

Effective THDM potential with explicit CP violation General hermitian renormalized $SU(2) \times U(1)$ invariant potential: $U(\Phi_1, \Phi_2) = -\mu_1^2(\Phi_1^{\dagger}\Phi_1) - \mu_2^2(\Phi_2^{\dagger}\Phi_2) - \mu_{12}^2(\Phi_1^{\dagger}\Phi_2) - \mu_{12}^2(\Phi_2^{\dagger}\Phi_2) + \mu_{12}^2(\Phi_2^{\dagger}\Phi_2) \mu_{12}^2(\Phi_$ $+\frac{\lambda_1}{2}(\Phi_1^{\dagger}\Phi_1)^2+\frac{\lambda_2}{2}(\Phi_2^{\dagger}\Phi_2)^2+\lambda_3(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_2)+\lambda_4(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1)+$ $+\frac{\pmb{\lambda_5}}{2}(\Phi_1^\dagger\Phi_2)(\Phi_1^\dagger\Phi_2)+\frac{\pmb{\lambda_5}}{2}(\Phi_2^\dagger\Phi_1)(\Phi_2^\dagger\Phi_1)+$ $+\lambda_6(\Phi_1^{\dagger}\Phi_1)(\Phi_1^{\dagger}\Phi_2)+\lambda_6^{*}(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_1)+$ $+ \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)$ $\langle \Phi_1
angle = rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \ v_1 \end{array}
ight), \qquad \langle \Phi_2
angle = rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \ v_2 \end{array}
ight)$ $U_{eff}(\Phi_1, \Phi_2) \Longrightarrow \frac{m_h^2}{2}(hh) + \frac{m_H^2}{2}(HH) + \frac{m_A^2}{2}(AA) + m_{H^{\pm}}^2(H^+H^-) +$ $+h, H, A, H^{\pm}$ interaction terms

In the finite temperature field theory Feynman diagrams with boson propagators, containing Matsubara frequencies, lead to structures of the form

$$\begin{split} I[m_1, m_2, ..., m_b] &= T \sum_{n=-\infty}^{\infty} \int \frac{d\mathbf{k}}{(2\pi)^3} \prod_{j=1}^{b} \frac{(-1)^b}{(\mathbf{k}^2 + \omega_n^2 + m_j^2)},\\ \omega_n &= 2\pi n T \ (n = 0, \pm 1, \pm 2, ...),\\ T &- \text{temperature}\\ n \neq 0 \end{split}$$

$$I[m_1, m_2, ..., m_b] = 2T (2\pi T)^{3-2b} \frac{(-1)^b \pi^{3/2}}{(2\pi)^3} \frac{\Gamma(b-3/2)}{\Gamma(b)} S(M, b-3/2),$$

$$S(M, b - 3/2) = \int \{ dx \} \sum_{n=1}^{\infty} \frac{1}{(n^2 + M^2)^{b-3/2}}, \qquad M^2 \equiv \left(\frac{m}{2\pi T}\right)^2.$$

A number of integrals can be easily calculated

$$J \equiv \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1}{(\mathbf{k}^2 + a_1^2)(\mathbf{k}^2 + a_2^2)},$$

taking a residue in the spherical coordinate system:

$$J = \frac{1}{4\pi(a_1 + a_2)}$$

 $a_{1;2}^2$ - the sums of squared frequency and squared mass.

Derivatives of first integral with respect to a_1 and a_2 can be used for calculation of integrals

$$J_{1}[a_{1}, a_{2}] \equiv \int \frac{d\mathbf{k}}{(2\pi)^{3}} \frac{1}{(\mathbf{k}^{2} + a_{1}^{2})^{2}(\mathbf{k}^{2} + a_{2}^{2})} = \\ = -\frac{1}{2a_{1}} \frac{\partial I}{\partial a_{1}} = \frac{1}{8\pi a_{1}(a_{1} + a_{2})^{2}}, \\ J_{2}[a_{1}, a_{2}] \equiv \int \frac{d\mathbf{k}}{(2\pi)^{3}} \frac{1}{(\mathbf{k}^{2} + a_{1}^{2})^{2}(\mathbf{k}^{2} + a_{2}^{2})^{2}} = \\ = \frac{1}{4a_{1}a_{2}} \frac{\partial^{2}I}{\partial a_{1}\partial a_{2}} = \frac{1}{8\pi a_{1}a_{2}(a_{1} + a_{2})^{3}}.$$

and

$$\begin{split} J_3[a_1, a_2, a_3] &\equiv \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1}{(\mathbf{k}^2 + a_1^2)(\mathbf{k}^2 + a_2^2)(\mathbf{k}^2 + a_3^2)} = \\ &= \frac{1}{4\pi(a_1 + a_2)(a_1 + a_3)(a_2 + a_3)}, \\ J_4[a_1, a_2, a_3] &\equiv \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1}{(\mathbf{k}^2 + a_1^2)^2(\mathbf{k}^2 + a_2^2)(\mathbf{k}^2 + a_3^2)} = \\ &= \frac{2a_1 + a_2 + a_3}{8\pi a_1(a_1 + a_2)^2(a_1 + a_3)^2(a_2 + a_3)}. \end{split}$$

Substituting

for

$$a_1 \to \sqrt{4\pi^2 n^2 T^2 + m_1^2} \quad \text{if } a_2 \to \sqrt{4\pi^2 n^2 T^2 + m_2^2},$$
$$J^n = \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1}{(\mathbf{k}^2 + \omega_n^2 + m_1^2)(\mathbf{k}^2 + \omega_n^2 + m_2^2)},$$

taking the sum over Matsubara frequencies after the integration we get:

 $\sum_{n=-\infty,n\neq 0}^{\infty} J^n = \sum_{n=-\infty,n\neq 0}^{\infty} \frac{1}{4\pi(\sqrt{4\pi^2n^2T^2 + m_1^2} + \sqrt{4\pi^2n^2T^2 + m_2^2})}.$

Thus the temperature corrections to effective potential are expressed by summed integrals,

after redefinition of mass parameters

$$m_{1;2} \longrightarrow m'_{1;2} = 2\pi T \sqrt{M_{1;2}^2 + n^2},$$
 где $M_{1;2} = \frac{m_{1;2}}{2\pi T},$

$$I_1 = \frac{-T}{8\pi} \frac{1}{(2\pi T)^3} \sum_{n=-\infty, n\neq 0}^{\infty} \frac{1}{\sqrt{M_1^2 + n^2}(\sqrt{M_1^2 + n^2} + \sqrt{M_2^2 + n^2})^2},$$

Threshold corrections from the triangle and box diagrams

Calculation of the one-loop threshold corrections in the framework of the finite temperature field theory (imaginary time formalism, Matsubara series) gives the result for efeective parameters lambda

Threshold corrections from the triangle and box diagrams

$$\begin{split} \Delta\lambda_1^{thr} &= 3h_t^4 |\mu|^4 I_2[m_Q, m_U] + 3h_b^4 |A_b|^4 I_2[m_Q, m_D] + \\ &+ h_t^2 |\mu|^2 (-\frac{g_1^2 - 3g_2^2}{2} I_1[m_Q, m_U] + 2g_1^2 I_1[m_U, m_Q]) \\ &+ h_b^2 |A_b|^2 (\frac{12h_b^2 - g_1^2 - 3g_2^2}{2} I_1[m_Q, m_D] + (6h_b^2 - g_1^2) I_1[m_D, m_Q]) \\ &\Delta\lambda_2^{thr} = 3h_t^4 |A_t|^4 I_2[m_Q, m_U] + 3h_b^4 |\mu|^4 I_2[m_Q, m_D] + \\ &+ h_b^2 |\mu|^2 (\frac{g_1^2 + 3g_2^2}{2} I_1[m_Q, m_D] + g_1^2 I_1[m_D, m_Q]) + \\ &+ h_b^2 |\mu|^2 (\frac{g_1^2 + 3g_2^2}{2} I_1[m_Q, m_U] + (6h_t^2 - 2g_1^2) I_1[m_U, m_Q]) \\ &\Delta\lambda_3^{thr} = h_t^2 ((|\mu|^2 \frac{3g_2^2 + g_1^2}{12} + |A_t|^2 \frac{12h_t^2 - g_1^2 - 3g_2^2}{12}) I_1[m_Q, m_U] + \\ &+ (|\mu|^2 \frac{3h_t^2 - g_1^2}{3} + |A_t|^2 \frac{g_1^2}{3}) I_1[m_U, m_Q]) + (h_b^2 (|\mu|^2 \frac{3g_2^2 - g_1^2}{12} + |A_b|^2 \frac{12h_t^2 + g_1^2 - 3g_2^2}{4}) I_1[m_Q, m_D] + \\ &+ (|\mu|^2 \frac{6h_b^2 - g_1^2}{6} + |A_b|^2 \frac{g_1^2}{6}) I_1[m_D, m_Q]) + h_t^2 |\mu|^2 |A_t|^2 I_2[m_Q, m_U] + h_b^2 |\mu|^2 |A_b|^2 I_2[m_Q, m_D] + \\ &+ h_t^2 h_b^2 (2(A_t A_b - |\mu|^2)) I_3[m_Q, m_U, m_D] + (|\mu|^4 + |A_t|^2 |A_b|^2 - 2A_t A_b |\mu|^2) I_4[m_Q, m_U, m_D] \end{split}$$

$$\begin{split} \Delta\lambda_4^{thr} &= 6h_t^4 |\mu|^2 |A_t|^2 I_2[m_Q, m_U] + 6h_b^4 |\mu|^2 |A_b|^2 I_2[m_Q, m_D] + \\ &+ h_t^2((|\mu|^2 \frac{12h_t^2 + g_1^2 - 3g_2^2}{4} - |A_t|^2 \frac{g_1^2 - 3g_2^2}{4}) I_1[m_Q, m_U] + \\ &+ (|A_t|^2 g_1^2 - |\mu|^2 (g_1^2 - 3h_t^2)) I_1[m_U, m_Q]) + \\ &+ h_b^2((|\mu|^2 \frac{-12h_t^2 + g_1^2 + 3g_2^2}{4} - |A_b|^2 \frac{g_1^2 + 3g_2^2}{4}) I_1[m_Q, m_D] + \\ &+ \frac{1}{2}(|A_b|^2 g_1^2 - |\mu|^2 (g_1^2 - 6h_b^2)) I_1[m_D, m_Q]) - \Delta\lambda_3^{th} \\ &\Delta\lambda_5^{thr} = 3h_t^4 \mu^2 A_t^2 I_2[m_Q, m_U] + 3h_b^4 \mu^2 A_b^2 I_2[m_Q, m_D] \\ &\Delta\lambda_6^{thr} = -3h_t^4 \mu A_t |\mu|^2 I_2[m_Q, m_U] - 3h_b^4 \mu A_b |A_b|^2 I_2[m_Q, m_D] + \\ &+ h_t^2 \mu A_t (\frac{g_1^2 - 3g_2^2}{4} I_1[m_Q, m_U] - g_1^2 I_1[m_U, m_Q]) + \\ &+ h_b^2 \mu A_b (\frac{-12h_b^2 + g_1^2 + 3g_2^2}{4} I_1[m_Q, m_U] - 3h_b^4 \mu A_b |\mu|^2 I_2[m_Q, m_D] \\ &\Delta\lambda_7^{thr} = -3h_t^4 \mu A_t |A_t|^2 I_2[m_Q, m_U] - 3h_b^4 \mu A_b |\mu|^2 I_2[m_Q, m_D] \\ &+ h_b^2 \mu A_b (-\frac{g_1^2 + 3g_2^2}{4} I_1[m_Q, m_D] - \frac{g_1^2}{2} I_1[m_D, m_Q]) + \\ &+ h_t^2 \mu A_t (\frac{12h_t^2 + g_1^2 - 3g_2^2}{4} I_1[m_Q, m_D] - \frac{g_1^2}{2} I_1[m_D, m_Q]) + \\ &+ h_b^2 \mu A_b (-\frac{g_1^2 + 3g_2^2}{4} I_1[m_Q, m_D] - \frac{g_1^2}{2} I_1[m_D, m_Q]) + \\ &+ h_t^2 \mu A_t (\frac{12h_t^2 + g_1^2 - 3g_2^2}{4} I_1[m_Q, m_D] - \frac{g_1^2}{2} I_1[m_D, m_Q]) + \\ &+ h_t^2 \mu A_t (\frac{12h_t^2 + g_1^2 - 3g_2^2}{4} I_1[m_Q, m_D] - \frac{g_1^2}{2} I_1[m_D, m_Q]) + \\ &+ h_t^2 \mu A_t (\frac{12h_t^2 + g_1^2 - 3g_2^2}{4} I_1[m_Q, m_D] - \frac{g_1^2}{2} I_1[m_D, m_Q]) + \\ &+ h_t^2 \mu A_t (\frac{12h_t^2 + g_1^2 - 3g_2^2}{4} I_1[m_Q, m_D] - \frac{g_1^2}{2} I_1[m_D, m_Q]) + \\ &+ h_t^2 \mu A_t (\frac{12h_t^2 + g_1^2 - 3g_2^2}{4} I_1[m_Q, m_D] - \frac{g_1^2}{2} I_1[m_D, m_Q]) + \\ &+ h_t^2 \mu A_t (\frac{12h_t^2 + g_1^2 - 3g_2^2}{4} I_1[m_Q, m_D] - \frac{g_1^2}{2} I_1[m_U, m_Q]) + \\ &+ h_t^2 \mu A_t (\frac{12h_t^2 + g_1^2 - 3g_2^2}{4} I_1[m_Q, m_U] - (3h_t^2 - g_1^2) I_1[m_U, m_Q]) \\ \end{aligned}$$

The logarithmic corrections

$$\begin{split} \Delta\lambda_1^{log} &= -\frac{1}{384\pi^2} \left(11g_1^4 - 36h_b^2g_1^2 + 9\left(g_2^4 - 4h_b^2g_2^2 + 16h_b^4\right) \right) \ln\left(\frac{m_Q m_U}{m_t^2}\right), \\ \Delta\lambda_2^{log} &= -\frac{1}{1536\pi^2} \left(44g_1^4 - 144h_t^2g_1^2 + 36g_2^4 + 576h_t^4 - 144g_2^2h_t^2 \right) \ln\left(\frac{m_Q m_U}{m_t^2}\right) \\ \Delta\lambda_3^{log} &= -\frac{1}{384\pi^2} \left(-11g_1^4 + 18\left(h_b^2 + h_t^2\right)g_1^2 + \right. \\ & \left. +9\left(g_2^4 - 2\left(h_b^2 + h_t^2\right)g_2^2 + 16h_b^2h_t^2\right)\right) \ln\left(\frac{m_Q m_U}{m_t^2}\right), \\ \Delta\lambda_4^{log} &= \frac{3}{64\pi^2} \left(g_2^4 - 2\left(h_b^2 + h_t^2\right)g_2^2 + 8h_b^2h_t^2\right) \ln\left(\frac{m_Q m_U}{m_t^2}\right). \end{split}$$

,

The wave-function renormalization correction

$$\begin{split} \Delta \lambda_1^{\text{wfr}} &= \frac{1}{2} (g_1^2 + g_2^2) A_{11}', \qquad \Delta \lambda_2^{\text{wfr}} = \frac{1}{2} (g_1^2 + g_2^2) A_{22}', \\ \Delta \lambda_3^{\text{wfr}} &= -\frac{1}{4} (g_1^2 - g_2^2) (A_{11}' + A_{22}'), \qquad \Delta \lambda_4^{\text{wfr}} = -\frac{1}{2} g_2^2 (A_{11}' + A_{22}'), \qquad \Delta \lambda_5^{\text{wfr}} = 0, \\ \Delta \lambda_6^{\text{wfr}} &= \frac{1}{8} (g_1^2 + g_2^2) (A_{12}' - A_{21}'^*) = 0, \qquad \Delta \lambda_7^{\text{wfr}} = \frac{1}{8} (g_1^2 + g_2^2) (A_{21}' - A_{12}'^*) = 0, \\ A_{ij}' &= \{ \frac{2 \cdot 3h_U^2}{24 \pi} F(m_Q^2, m_U^2, T) \begin{bmatrix} |\mu|^2 & -\mu^* A_U^* \\ -\mu A_U & |A_U|^2 \end{bmatrix} + \\ &+ (U \longrightarrow D, A \longleftrightarrow \mu) \} (1 - \frac{1}{2}l) \\ F(m_1^2, m_2^2, T) &= T \sum_{n=-\infty}^{+\infty} \frac{1}{(\sqrt{m_1^2 + (2\pi nT)^2} + \sqrt{m_2^2 + (2\pi nT)^2})^3} = \\ &= \frac{T}{(m_1 + m_2)^3} + 2T \sum_{n=1}^{+\infty} \frac{1}{(\sqrt{m_1^2 + (2\pi nT)^2} + \sqrt{m_2^2 + (2\pi nT)^2})^3}. \end{split}$$

Temperature-dependent parameters with various quantum corrections in CPX-like scenario $A_t=A_b=1000$ GeV, $\mu=2000$ GeV

The thermal evolution of the CP-even Higgs bosons h and H is expressed by

$$\begin{split} m_h^2 &= c_{\alpha-\beta}^2 m_A^2 + v^2 (2\lambda_1 s_{\alpha}^2 c_{\beta}^2 + 2\lambda_2 c_{\alpha}^2 s_{\beta}^2 - 2(\lambda_3 + \lambda_4) c_{\alpha} c_{\beta} s_{\alpha} s_{\beta} + \\ &+ \operatorname{Re} \lambda_5 (s_{\alpha}^2 s_{\beta}^2 + c_{\alpha}^2 c_{\beta}^2) - 2 c_{\alpha+\beta} (\operatorname{Re} \lambda_6 s_{\alpha} c_{\beta} - \operatorname{Re} \lambda_7 c_{\alpha} s_{\beta})), \\ m_H^2 &= s_{\alpha-\beta}^2 m_A^2 + v^2 (2\lambda_1 c_{\alpha}^2 c_{\beta}^2 + 2\lambda_2 s_{\alpha}^2 s_{\beta}^2 + 2(\lambda_3 + \lambda_4) c_{\alpha} c_{\beta} s_{\alpha} s_{\beta} + \\ &+ \operatorname{Re} \lambda_5 (c_{\alpha}^2 s_{\beta}^2 + s_{\alpha}^2 c_{\beta}^2) + 2 s_{\alpha+\beta} (\operatorname{Re} \lambda_6 c_{\alpha} c_{\beta} + \operatorname{Re} \lambda_7 s_{\alpha} s_{\beta})), \end{split}$$

where α is the mixing angle of the CP-even states h and H.

[Akhmetzyanova E.N., Dolgopolov M.V., Dubinin M.N. Higgs Bosons in the Two-Doublet Model with CP Violation // Phys.Rev.D. V.71. N7. 2005. P.075008. (hepph/0405264)]

Higgs bosons masses

 $tg\beta = 5, m_{H^{\pm}} = 180 \text{ GeV}, A_{t,b} = 1200 \text{ GeV}, \mu = 500 \text{ GeV}.$

Higgs bosons masses

The same contours at $tg\beta = 15$, $m_{H^{\pm}} = 230 \text{ GeV}$

Higgs bosons masses

The same contours at $tg\beta = 40$, $m_{H^{\pm}} = 260 \text{ GeV}$

Conclusions

1. In the MSSM we calculate the 1-loop finite-temperature corrections from the squarks-Higgs bosons sector, reconstruct the effective two-Higgs-doublet potential in the full MSSM parameter space ($m_{H\pm}$, tg β , $A_{t,b}$, μ , m_Q , m_U , m_D).

2. At large values of A and μ of around 1 TeV the threshold finite-temperature corrections from triangle and box diagrams with intermediate third generation squarks are very substantial.

3. High sensitivity of the low-temperature evolution to the effective two-doublet and the MSSM squark sector parameters is observed, but rather extensive regions of the full MSSM parameter space allow the first-order electroweak phase transition respecting the phenomenological constraints at zero temperature.