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I discuss the details of calculating hadron properties from the OPE for correlators of quark cur-
rents in QCD, which constitutes the basis of the method of QCD sum rules. The main emphasis
is laid on gaining control over the systematic uncertainties of the hadron parameters obtained
within this method. We start with examples from quantum mechanics, where bound-state prop-
erties may be calculated independently in two ways: exactly, by solving the Schrodinger equation,
and approximately, by the method of sum rules. Knowing the exact solution allows us to control
each step of the sum-rule extraction procedure. On the basis of this analysis, we formulate several
improvements of the method of sum rules. We then apply these modifications to the analysis of
the decay constants of heavy charm and beauty mesons.
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A QCD sum-rule calculation of hadron parameters involves two steps:

I. Calculating the operator product expansion (OPE) series for a relevant correlator

For heavy-light currents, one observes a very strong dependence of the OPE for the correlator (and,
consequently, of the extracted decay constant) on the heavy-quark mass used, i.e., on-shell (pole), or
running MS mass.

OPE reorganized in terms of MS mass exhibits a reasonable convergence of the perturbative expansion
for hadron observables.

I1. Extracting the parameters of the ground state by a numerical procedure
NEW :

(a) Make use of the new more accurate duality relation based on Borel-parameter-dependent threshold.

Allows a more accurate extraction of the decay constants and provides realistic estimates of the
intrinsic (systematic) errors — those related to the limited accuracy of sum-rule extraction procedures.

(b) Study the sensitivity of the extracted value of fp to the OPE parameters (quark masses, conden-
sates,. .. ). The corresponding error is referred to as OPE uncertainty, or statistical error.




1. Basic object in QCD:
M(p?) = i [ dxe™ (0| (js(x)ji0))[0),  js(x) = (mg + m)GiysQ(x)

and its Borel transform I1(7), p> — 7.

Analogue in quantum mechanics:

Polarization operator 11(FE) is defined through the full Green function G(E):

[(E) = (7 = 0| =——|F = 0).

H-E

and its Borel transform £ — T,

1
ﬂ — eXp(—HT)

which leads to the evolution operator in imaginary time 7 (T = 1/Mgge1):

I(T) = (Fy = Olexp(—HT)|F; = 0).
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Exact and Feynman propagators of a confined particle

Feynman propagator of a NR particle with mass m

1
Dp(E, k) = = .
k2 = 2mE — i0

The plot compares the values at £ = 0 of Dy and D.,,. for HO potential mw?r?/2.

Dnr(k?) [GeV 2]
0.5

k% [GelV?)
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As soon as “soft”” momenta in Feynman diagrams are essential, nonperturbative effects in propa-
gators are essential.

At large k2, one finds
2 4

w w
Dexact (k) = Dp(K?) + #F + #F ...



Correlator in a realistic potential model : confinement + Coulomb
Polarization operator I1(E) = (7; = 0|7 = 0).

2

k a
H = 2 + Vconf(r) - T .
m r

Expansion of II(E) in powers of the interaction:
2
M, N, ry

____________________________________________________________

____________________________________________________________
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e Analogue of the OPE for the Borel image I1(7):

For the case V ,(7) = ” an explicit double expansion in powers of @ and powers of wT

2
Hope(T) = pert(T) + Hpower(T)

m 3/2 [ 1 5 5
Hper(T) = ( ) I+ V2rmT a + §m7'l' Ta|,

2nT

m 2l 1 1 19 1541
Hoower(T) = |=—=] |-=0’T?*|1 + = V2rmTa W*T*1 + =—— V2amT
pover(T) (27TT) 3¢ ( T ) 480 T 1ga

32 32, 2
[per(T) = (2_”;) f dzexp(—zT) [2 \/% + V2rma + = . 172“ ]

0

e The ‘“phenomenological” representation for II(7) — in the basis of hadron eigenstates:

[I(T) = (7 = Oexp(~HT)|F; = 0) = > R, exp(~E,T),
n=0

E, - energy of the n-th bound state, R, = |¥,,(7 = 0)]°.



How to calculate E,_( and R, of the ground state from I1(7) known numerically?

— o7 I0292H(T) - Eg II(T) exp(Ep T) = Ry
. S|
2 L
4 L
1.8

3,
1.6 \

2,
1.4 \
12 i T T

05 1 15 2 25 3 35 4 1 15 2 25 3 35 4

Black - exact I1(7); Red - OPE with 4 power corrections, Green - OPE with 100 power corrections.

With a few power corrections the plateau cannot be reached.

Some other concept: ‘“Quark-hadron duality’’ assumption will be used.
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Sum rule:
Hopg(T') = Hphys(T).
OPE side:

(ee]

Hope(T) = f dze_ZTppert(Z) + Hpower(T)-
0
Physical side with the “Standard Ansatz” for the excited states:

I(T) = fdze_ZTpphys(Z)a pphys(z) = Ro6(z — Ep) + 60(z — Zeff)ppert(z)-
0
This gives

Zeff

R0€_EOT = Haual(T, Zefr) = fdze_ZTppert(Z) + Hpower(T)-
0

From this sum rule one obtains estimates for R, and Ey, Ruua(7T,zer)s Edqua(T, Zesr)
—dr 1og I(T, zef).

These depend on unphysical parameters 7 and z.g.

How to fix these parameters?

The standard and almost obvious criterion is ‘“maximal stability’’:
choose z.¢+ such that the dependence of E4,, and Ry, on 7 in the T-“window’’ is minimal.




k2 2.2

How this works in quantum mechanics for H = 5— + =5~ — .
Eava (T, Z)
Eg
1
0.9
0.8 . .
Z. frommaximal stability of Egya
0.7
0.6
T [Gev Y]
0.6 0.7 0.8 09 1
foual (T2 Eaa(2) [GeV] foual (7 2:Eg) (GeV]
0.08 ____________E)ia_Ct_ ___________ 0.08 -___________e>iait ____________
Z. frommaximal stability of fqua Using exact Eg
0.06 0.06
Extracted
0.04 0.04
T [Gev "
0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1 [Gev]
What is bad?

e A model for the excited states is oversimplified.

e Within the assumption z.¢ = const, maximal stability does not automatically lead to a success.
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Exact effective threshold:

Use the exact £, and R, obtained from Schroedinger equation and solve the relation

Zeff

Roe ™" = f dze™™ ppert(2) + Mpower(T)
0
with respect to z.. The obtained “exact threshold” is a slightly rising function of 7', z.(7T).

Zexact(T)

1.175 /
115

1125
11

1.075

1.05
1.025

T

0.4 0.6 0.8 1

We have neglected this dependence when calculating Ey,, = —dr log gy (7T, zeg(T)).
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Correlatorin QCD

() = i f dxe™(QIT (js()/AO) 19, js(x) = (mg + m)Giys Q)

Physical QCD vacuum |QQ) is complicated and differs from perturbative QCD vacuum |0).
Wilsonian OPE:

T (js()j40) = Co, w1 + ) Culo, ) - OO0, p0)

Condensates — nonzero expectation values of gauge-invariant operators over physical vacuum:
Q| : 00, p) : Q) # 0.

Borel transform ( p2 — T): Green functions in Minkowski space — evolution operator in Euclidean space

o0

I(7) = f e_STppert(Sa @, mgp, ) ds + Hpower(T, my, ),

(mQ+mM)2

2
o Ppen(s, ) = pO(s) + ELp(s) + (L) p(s) + - -
o Il ower(T, ) — power expansion in 7 in terms of the condensates:

2 2 2
2C ag masT mst ma,T @
1++(1—TQ)+70(1—TQ) +1—12<7GG>}.

—-mA T _
Hpower(T,,u - mQ) = (mQ + m)ze Q {_mQ<QQ>

Sum rule: Hope(7) = Ihadron(7)
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Sum rule: Iopg(7) = Hhadron(T)

Duality concept: where pQCD calculations may be applied in hadron physics?

— [ [ IIII| I [ IIII| I [ III| —
E v : N
3 pr
107 T | |y(28) f E
- Z 5
10 21 .
- L -
R B ]
E A : =
: AN A =
E ; \\ r N
I S -
- +'(p =
| a’ _|
‘|0 -]_*.*.T*I IIII| | | IIII| | [ III| i
2
1 10 10



Spectral densities of the polarization operator (OPE vs hadron language):

theoretical
physical

/ eff

YA >
2

mb Mé Scont_(lvlg-'_mﬂ)2

Quark — hadron duality assumption :

f ds exp(=sT)Ppere(s) = f ds exp(—S7)Phadr($).

Seff Sphys.cont.
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With the help of the duality assumption, the contribution of the excited states cancels against the
high-energy region of the perturbative contribution, and from

Hope(T) = Hhadron(7)

we come to

Seff
~M? _
féM‘ée 0" = f e STppert(Sa a,my, ) ds + Hpower(Ta mo, 1) = Haual(7, i, Ser)

(mQ+mu)2

Note: nonperturbative contributions are all referred to the ground state.

Extraction of bound-state parameters is possible only if we fix s.¢ by some “external” criterion.

For heavy-meson observables one faces two problems:

1. How to reliably calculate the truncated OPE for the correlator?

2. How to fix s.r and estimate the errors in the extracted value of f,?



~ OPE: heavy - quark pol e mass or runni ng nass ?
Spectral densities

p(mb, Ay, S) - H(mba g, T) — H(mb(mb’ a’s)a ay, T) - H(mba A, T) — p(mb, Ay, S)

To aZ-accuracy, my, .. = 4.83 GeV & my(m,) = 4.20 GeV

(a/zsr)ipi(s) (a/ﬂ)i%i(S,MZTT\))
4} Pole mass OPE 4 S—schemg
3 3
2 2 /
0 0 \!
| i=0i=1i=2 . T i=0i=1i=2 .
20 25 30 35 40 20 25 30 35 40

¢ In pole mass scheme poor convergence of perturbative expansion

o In MS scheme the perturbative spectral density has negative region

Ext ract ed decay const ant

2 2 —
1 qual(7,80) 1 qual(7,50)

0.05 0.05
0.04 0.04

0.03 O(1) O(a) O(a?) total 0.03

0.02 0.02 0(1) O(a) O(a?) total

0.01 - 0.01

0 0

~001 0. 012 014 016 018 ~001 0. 012 014 016 018

e Decay constant in pole mass shows NO hierarchy of perturbative contributions

e Decay constant in MS-scheme shows such hierarchy. Numerically, f» using pole mass < f» using MS mass.
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Quark — hadron duality assumption :

—M? Se _
féMge QT — j(‘ " € STppert(Sa a, mQ’ /*t) ds + Hpower(Ta mQ7 /J) = Hdual(Ta /*ta Seff)

mQ+mu)2

In order the L.h.s. and the r.h.s. have the same 7-behavior

Seff IS @ function of v (and u) : Ses (1, 1)

The “dual” mass: | M2 (1) = =< log Igya (T, ser(7)).

If quark-hadron duality is implemented *“‘perfectly”, then ,, should be equal to M;
The deviation of My, from the actual meson mass M, measures the contamination of the dual
correlator by excited states. Better reproduction of //, — more accurate extraction of f.

Taking into account 7-dependence of s.g
improves the accuracy of the duality approximation.

Obviously, in order to predict f,, we need to fix s.q. How to fix scg?

e For a given trial function s.q(7) there exists a variational solution which minimizes the deviation of
the dual mass from the actual meson mass in the - “window”.
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Our new algorithm for extracting ground — state parameters when Mg is known
(i) Consider a set of Polynomial 7-dependent Ansaetze for s.q: sgg (1) = ] sg.”)(r)j .

j=0
(ii) Minimize the squared difference between the ‘‘dual” mass Mﬁual and the known value Mé in
the 7-window. This gives us the parameters of the effective continuum threshold.
(iii) Making use of the obtained thresholds, calculate the decay constant.

(iv) Take the band of values provided by the results corresponding to linear, quadratic, and cubic
effective thresholds as the characteristic of the intrinsic uncertainty of the extraction procedure.

llustration: D-meson

Mgual/Mp faual[MeV]
1.02 230
220
1.01 n=0 210 n=2

| N 200

 N=2n=3 190
n=0
0.99 180
170
7[GeV 2]

01 02 03 04 05 06 01 02 03 04 05 06

7[GeV 2]
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Extraction of fp: QCD vs potential model

Potential Model (HO + Coulomb)

Equa (T, Zg (T))
Eq

1.04
\ n=0
1.02 \
N

1
n=2
0.98

0.96

0.2 0.4

faual (T, Zerr (T)) [GeV]
0.0

0.6

0.8

827

0.08

(OX0FX: 3 i e

0.076
0.074

0.072

Surprising? No:

" T [GeV 1]

" T [Gev Y

Mgual/Mp

1.02

1.01

1

0.99

~ n=0

,; _—
_~

n=2n=3

-
0.05 0.075 0.1 0.125 0.15 0.175 0.2

fdual[MeV]
220
215

n=3
210

n=2
205
200 ~_ n=0

T
0.05 0.075 0.1 0.125 0.15 0.175 0.2

QCD (fp for my,(my,) = 4.20 GeV)

[GeV?]

[GeV 2]

As soon as quark-hadron duality is implemented as a cut on the perturbative correlator,
the extraction of the ground-state parameters in QCD and in potential model are very similar.
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Extraction of fj
me(m) = 1.279 £ 0.013GeV, u =1 -3 GeV.

230 —
—IOO - : : O|013l : : : : : : . - [ [ [ [ [ [ [ 1
Fm =1.279 _ GeV ; 220 | .
- c -0.013 T - T
80 [ . 210 [ % + l ]
I ] < 200 b Jf T -
60 | ] @) -
€ i 1 = 190 ]
8 L ] o B ]
S oh ] 180 - + :
i ] 170 | ]
i i [ m=1279(13)GeV N =2 N=3 ]
20 - ] 160 F 0cD-SR LATTICE  PDG 1
C 150 Lo 1+ | IR R Y B B,
ol | g g
0.18 0.19 0.20 0.21 0.22 0.23 0.24 2 §
fD (GeV) ©
fp = 206.2 +7.3ppg = 5.15yst MeV o (const) = 181.3 +7. dope MeV

The effect of 7-dependent threshold is visible!
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Extraction of fp,

mo(m,) = 1.279 + 0.013GeV, u = 1 — 3GeV
100 ———

250; + @]@j ,+ 4&

~~

r

= >
= N—’
(@] n
(&) 0

200 +

_mc =1.279(13)GeV N =2 N =3

QCD-SR LATTICE PDG
150 T NI NT N SN NI N

€ €
s g
0.20 0.25 0.30 2 5
o
f (GeV) ° 8
Ds o

st = 246.5 +15.70p + 5syst MeV

fps (const) =218.8 +£16.100g MV



Extraction of fz. Problem 1: a very strong sensitivity to ()

fg[MeV]
240

220 ¢

200 |

180 |

160 ¢

4.2 4.25 4.3 4.35

7-dependent effective threshold:

2 (my, (Gq), u = mp) = 1206.5 +4 - 37(

+ 10 MeV on m;, —» ¥ 37 MeV on f3!

mp[GeV]

my, — 4.245 GeV

0.1 GeV

)4

(Gq)'? — 0.267 GeV

0.01 GeV

Jo

21
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Problem 2. The dependence on the renormalization scale u.

Even with NNLO corrections to the correlator, the sensitivity to the choice of y is rather large.
This signals that NNNLO (4 loops) are non-negligible.

Often, the contribution of the omitted higher orders is probed by the variation of the scale u.

“Standard” in B-physics: m,/2 < u < 2my;,. But why?

(@/n) pi(s.)

5

4

3 /’l:rnb/2

2

1 /
0

-1 i=0i=1i=2

S
24 25 26 27 28 29 30

£2 dual (7,50,0)
0.08

pu=my/2
0.06

0.04

0.02
0
-0.02

1=01i=11=2 total

-0.04

-
0.1 0.12 0.14 0.16 0.18

(@/n) pis,)

H=1Mp

— O = N W ks W

1=01=11=2

18 20 22

f2dual (T,SO’/'[)
0.08

24 26

28

M=y
0.06

0.04

0.02

0
-0.02

i=0i=11=2

total

-0.04
0.1 0.12

0.14

0.16

0.18

(@/n) pis,10)

p=2my,

/

—_— O = N W A~ W

1=01=11=2
S
15 17.5 20 225 25 27.5 30

£2 dual (7,50,
0.08

S —

p=2my,

0.06
0.04

0.02
0

-0.02
i=0i=11=2 tota
-0.04

-
0.1 0.12 0.14 0.16 0.18

What is the relevant range of the y-variation to probe higher-order contributions?
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The prediction for f; is not feasible without a very precise knowledge of m,:

80 s
70 [

60 |

Count

50 |
40 |

30 |

0.05 0.10 0.15
f, (GeV)

220

200

f (MeV)

180

160

fg =193.4+12.30p * 4-35yst MeV

LI B s Sy B B B

r +0.17

' m =4.20 GeV
b -0.

07

0.20

0.25 0.30

T T T T
[ m =4.163(16) GeV

|
]

QCD-SR

mb=4.245(25) GeV

N =2
f

LATTICE

.

N =3 A
f

Count

200 L B B L B L L B L 200 ————— 7
L mb=4.163 + 0.016 GeV L mb=4'245 + 0.025 GeV
150 L 150 |
)
o I
100 | 3 100
3 I
50 L 50 [
ol i ol ‘
0.05 0.10 0.15 0.20 0.25 0.30 005 0.10 0.15 0.20 0.25 0.30
fB(GeV) fB(GeV)

Our estimate : mp (Mp) = 4.245 + 0.025 GeV

fg (const) =184 =13 MV
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Extraction of f5,

80
70 [
60;
50 |

40 |

Count

30 |

F m_= 4.245 + 0.025 GeV

0.15 0.20 0.25

fBS (GeV)

0.30

(MeV)

f

Bs

300

280

260

240

220

200

180 |

B m = 4.163(16) GeV

m = 4.245(25) GeV

QCD-SR

N =2

f

LATTICE

N=3

f —

fas = 232.5 + 18.60pE * 2.4¢,st MeV

fgs (const) =218 %18 MV
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Conclusions

The effective continuum threshold s.¢ is an important ingredient of the method of dispersive sum
rules which determines to a (very) large extent the numerical values of the extracted hadron
parameter. Finding a criterion for fixing s.; poses a problem in the method of sum rules.

e s.¢ depends on the external Kinematical variables (e.g., momentum transfer in sum rules for 3-
point correlators and light-cone sum rules) and ‘“‘unphysical” parameters (renormalization scale
U, Borel parameter 7). Borel-parameter 7-dependence of s.; emerges naturally when trying to
make quark-hadron duality more accurate.

e We proposed a new algorithm for fixing 7-dependent s.g, for those problems where the ground-
state mass M, is known. We have tested that our algorithm leads to more accurate values of
ground-state parameters than the ‘“‘standard” algorithms used in the context of dispersive sum
rules before. Moreover, our algorithm allows one to probe “systematic’ (= ‘““intrinsic’’) uncer-
tainties related to the limited accuracy of the extraction procedure in the method of QCD sum
rules.

e We reported the decay constants of D, D;, B, B, mesons which along with the ‘statis-
tical” errors related to the uncertainties in the QCD parameters, for the first time include
realistic ‘‘systematic” errors.

Many other results are to come.



