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I discuss the details of calculating hadron properties from the OPE for correlators of quark cur-
rents in QCD, which constitutes the basis of the method of QCD sum rules. The main emphasis
is laid on gaining control over the systematic uncertainties of the hadron parameters obtained
within this method. We start with examples from quantum mechanics, where bound-state prop-
erties may be calculated independently in two ways: exactly, by solving the Schrödinger equation,
and approximately, by the method of sum rules. Knowing the exact solution allows us to control
each step of the sum-rule extraction procedure. On the basis of this analysis, we formulate several
improvements of the method of sum rules. We then apply these modifications to the analysis of
the decay constants of heavy charm and beauty mesons.
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A QCD sum-rule calculation of hadron parameters involves two steps:

I. Calculating the operator product expansion (OPE) series for a relevant correlator

For heavy-light currents, one observes a very strong dependence of the OPE for the correlator (and,
consequently, of the extracted decay constant) on the heavy-quark mass used, i.e., on-shell (pole), or
running MS mass.

OPE reorganized in terms of MS mass exhibits a reasonable convergence of the perturbative expansion
for hadron observables.

II. Extracting the parameters of the ground state by a numerical procedure

NEW :

(a) Make use of the new more accurate duality relation based on Borel-parameter-dependent threshold.

Allows a more accurate extraction of the decay constants and provides realistic estimates of the
intrinsic (systematic) errors — those related to the limited accuracy of sum-rule extraction procedures.

(b) Study the sensitivity of the extracted value of fP to the OPE parameters (quark masses, conden-
sates,. . . ). The corresponding error is referred to as OPE uncertainty, or statistical error.



3

1. Basic object in QCD:

Π(p2) = i
∫

dxeipx⟨0|T
(

j5(x) j†5(0)
)
|0⟩, j5(x) = (mQ + m)q̄iγ5Q(x)

and its Borel transform Π(τ), p2 → τ.

Analogue in quantum mechanics:

Polarization operator Π(E) is defined through the full Green function G(E):

Π(E) = ⟨⃗r f = 0| 1
H − E

|⃗ri = 0⟩.

and its Borel transform E → T ,
1

H − E
→ exp(−HT )

which leads to the evolution operator in imaginary time T (T = 1/MBorel):

Π(T ) = ⟨⃗r f = 0| exp(−HT )|⃗ri = 0⟩.
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Exact and Feynmanpropagators of a confined particle

Feynman propagator of a NR particle with mass m

DF(E, k⃗2) =
1

k⃗2 − 2mE − i0
.

The plot compares the values at E = 0 of DF and Dexact for HO potential mω2r2/2.
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As soon as “soft” momenta in Feynman diagrams are essential, nonperturbative effects in propa-
gators are essential.
At large k2, one finds

Dexact(k2) = DF(k2) + #
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k6 + . . .
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Correlator in a realistic potential model : confinement + Coulomb

Polarization operator Π(E) = ⟨⃗r f = 0| 1
H−E |⃗ri = 0⟩.

H =
k2

2m
+ Vconf(r) − α

r
.

Expansion of Π(E) in powers of the interaction:
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• Analogue of the OPE for the Borel image Π(T ):

For the case Vconf(r) = mω2r2

2 an explicit double expansion in powers of α and powers of ωT

ΠOPE(T ) = Πpert(T ) + Πpower(T ),

Πpert(T ) =
( m
2πT

)3/2
[
1 +
√

2πmTα +
1
3

mπ2Tα2
]
,

Πpower(T ) =
( m
2πT

)3/2
[
−1

4
ω2T 2

(
1 +

11
12

√
2πmTα

)
+

19
480
ω4T 4

(
1 +

1541
1824

√
2πmTα

)]

Πpert(T ) =
( m
2π

)3/2
∞∫

0

dz exp(−zT )
[
2
√

z
π
+
√

2πmα +
π3/2mα2

3
√

z

]

• The “phenomenological” representation for Π(T ) – in the basis of hadron eigenstates:

Π(T ) = ⟨⃗r f = 0| exp(−HT )|⃗ri = 0⟩ =
∞∑

n=0

Rn exp(−EnT ),

En - energy of the n-th bound state, Rn = |Ψn(⃗r = 0)|2.
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How to calculate En=0 and Rn=0 of the ground state from Π(T ) known numerically?
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Black - exactΠ(T ); Red - OPE with 4 power corrections, Green - OPE with 100 power corrections.

With a few power corrections the plateau cannot be reached.

Some other concept: “Quark-hadron duality” assumption will be used.
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Sum rule:
ΠOPE(T ) = Πphys(T ).

OPE side:

ΠOPE(T ) =

∞∫
0

dze−zTρpert(z) + Πpower(T ).

Physical side with the “Standard Ansatz” for the excited states:

Π(T ) =

∞∫
0

dze−zTρphys(z), ρphys(z) = R0δ(z − E0) + θ(z − zeff)ρpert(z).

This gives

R0e−E0T = Πdual(T, zeff) ≡
zeff∫
0

dze−zTρpert(z) + Πpower(T ).

From this sum rule one obtains estimates for R0 and E0, Rdual(T, zeff), Edual(T, zeff) =

−dT logΠ(T, zeff).
These depend on unphysical parameters T and zeff.
How to fix these parameters?

The standard and almost obvious criterion is “maximal stability”:
choose zeff such that the dependence of Edual and Rdual on T in the T -“window” is minimal.
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How this works in quantum mechanics for H = k2

2m +
mω2r2

2 − αr .
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What is bad?
• A model for the excited states is oversimplified.
•Within the assumption zeff = const, maximal stability does not automatically lead to a success.
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Exact effective threshold:
Use the exact E0 and R0 obtained from Schroedinger equation and solve the relation

R0e−E0T =

zeff∫
0

dze−zTρpert(z) + Πpower(T )

with respect to zeff. The obtained “exact threshold” is a slightly rising function of T , zeff(T ).
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We have neglected this dependence when calculating Edual = −dT logΠdual(T, zeff(T )).
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Correlator in QCD

Π(p2) = i
∫

dxeipx⟨Ω|T
(

j5(x) j†5(0)
)
|Ω⟩, j5(x) = (mQ + m)q̄iγ5Q(x)

Physical QCD vacuum |Ω⟩ is complicated and differs from perturbative QCD vacuum |0⟩.
Wilsonian OPE:

T
(

j5(x) j†5(0)
)
= C0(x2, µ)1̂ +

∑
n

Cn(x2, µ) : Ô(0, µ) :

Condensates – nonzero expectation values of gauge-invariant operators over physical vacuum:

⟨Ω| : Ô(0, µ) : |Ω⟩ , 0.

Borel transform (p2 → τ): Green functions in Minkowski space→ evolution operator in Euclidean space

Π(τ) =
∞∫

(mQ+mu)2

e−sτρpert(s, α,mQ, µ) ds + Πpower(τ,mQ, µ),

• ρpert(s, µ) = ρ(0)(s) + αs(µ)
π
ρ(1)(s) +

(
αs(µ)
π

)2
ρ(2)(s) + · · ·

• Πpower(τ, µ) – power expansion in τ in terms of the condensates:

Πpower(τ, µ = mQ) = (mQ + m)2e−m2
Qτ

{
−mQ⟨q̄q⟩

[
1 + 2CFαs

π

(
1 −

m2
Qτ

2

)
+

m2
0τ

2

(
1 −

m2
Qτ

2

)]
+ 1

12

⟨
αs
π

GG
⟩}
.

Sum rule: ΠOPE(τ) = Πhadron(τ)
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Sum rule: ΠOPE(τ) = Πhadron(τ)

Duality concept: where pQCD calculations may be applied in hadron physics?
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Spectral densities of the polarization operator (OPE vs hadron language):

eff

fB+
x x

M2
B

2
bm 2

πB*cont  s     =(M  +m  )

Im    (s)Π

s

theoretical
physical

s

Quark- hadron dualityassumption :∫ ∞

seff

ds exp(−sτ)ρpert(s) =
∫ ∞

sphys.cont.

ds exp(−sτ)ρhadr(s).
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With the help of the duality assumption, the contribution of the excited states cancels against the
high-energy region of the perturbative contribution, and from

ΠOPE(τ) = Πhadron(τ)

we come to

f 2
QM4

Qe−M2
Qτ =

seff∫
(mQ+mu)2

e−sτρpert(s, α,mQ, µ) ds + Πpower(τ,mQ, µ) ≡ Πdual(τ, µ, seff)

Note: nonperturbative contributions are all referred to the ground state.
Extraction of bound-state parameters is possible only if we fix seff by some “external” criterion.

For heavy-meson observables one faces two problems:

1. How to reliably calculate the truncated OPE for the correlator?

2. How to fix seff and estimate the errors in the extracted value of fQ?
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OPE : heavy - quark pole mass or running mass?
Spectral densities

ρ(mb, αs, s)→ Π(mb, αs, τ)→ Π(mb(mb, αs), αs, τ)→ Π(mb, αs, τ)→ ρ(mb, αs, s)

To α2
s-accuracy, mb,pole = 4.83 GeV↔ mb(mb) = 4.20 GeV
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• In pole mass scheme poor convergence of perturbative expansion

• In MS scheme the perturbative spectral density has negative region

Extracted decay constant
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• Decay constant in pole mass shows NO hierarchy of perturbative contributions

• Decay constant in MS-scheme shows such hierarchy. Numerically, fP using pole mass≪ fP using MS mass.
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Quark- hadron dualityassumption :

f 2
QM4

Qe−M2
Qτ =

∫ seff

(mQ+mu)2 e−sτρpert(s, α,mQ, µ) ds + Πpower(τ,mQ, µ) ≡ Πdual(τ, µ, seff)

In order the l.h.s. and the r.h.s. have the same τ-behavior

seff is a function of Τ Hand ΜL : seff HΤ, ΜL

The “dual” mass: M2
dual(τ) = −

d
dτ logΠdual(τ, seff(τ)).

If quark-hadron duality is implemented “perfectly”, then Mdual should be equal to MQ;
The deviation of Mdual from the actual meson mass MQ measures the contamination of the dual
correlator by excited states. Better reproduction of MQ→ more accurate extraction of fQ.

Taking into account τ-dependence of seff

improves the accuracy of the duality approximation.

Obviously, in order to predict fQ, we need to fix seff. How to fix seff?

• For a given trial function seff(τ) there exists a variational solution which minimizes the deviation of
the dual mass from the actual meson mass in the τ-“window”.
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Our new algorithm for extracting ground - state parameters when MQ is known

(i) Consider a set of Polynomial τ-dependent Ansaetze for seff: s(n)
eff (τ) =

n∑
j=0

s(n)
j (τ) j.

(ii) Minimize the squared difference between the “dual” mass M2
dual and the known value M2

Q in
the τ-window. This gives us the parameters of the effective continuum threshold.

(iii) Making use of the obtained thresholds, calculate the decay constant.

(iv) Take the band of values provided by the results corresponding to linear, quadratic, and cubic
effective thresholds as the characteristic of the intrinsic uncertainty of the extraction procedure.

Illustration: D-meson
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Extraction of fP: QCD vs potential model

Potential Model (HO + Coulomb) QCD ( fB for m̄b(m̄b) = 4.20 GeV)
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Surprising? No:

As soon as quark-hadron duality is implemented as a cut on the perturbative correlator,
the extraction of the ground-state parameters in QCD and in potential model are very similar.
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Extraction of fD

mc(mc) = 1.279 ± 0.013 GeV, µ = 1 − 3 GeV.

0

20

40

60

80

100

0.18 0.19 0.20 0.21 0.22 0.23 0.24

C
o
u
n
t

f
D
 (GeV)

m
c
 = 1.279         GeV

+0.013

-0.013

150

160

170

180

190

200

210

220

230

f D
 (
M
e
V
)

QCD-SR LATTICE

c
o
n
s
ta
n
t

!
-d
e
p
e
n
d
e
n
t

N
f
 = 2 N

f
 = 3m

c
 = 1.279(13) GeV

PDG

fD = 206.2 ± 7.3OPE ± 5.1syst MeV fD HconstL = 181.3 ± 7.4OPE MeV

The effect of τ-dependent threshold is visible!
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Extraction of fDs

mc(mc) = 1.279 ± 0.013 GeV, µ = 1 − 3 GeV.
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Extraction of fB. Problem 1: a very strong sensitivity to mb(mb)
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± 10 MeV on mb→ ∓ 37 MeV on fB!
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Problem 2. The dependence on the renormalization scale µ.

Even with NNLO corrections to the correlator, the sensitivity to the choice of µ is rather large.
This signals that NNNLO (4 loops) are non-negligible.
Often, the contribution of the omitted higher orders is probed by the variation of the scale µ.
“Standard” in B-physics: mb/2 < µ < 2mb. But why?
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What is the relevant range of the µ-variation to probe higher-order contributions?
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The prediction for fB is not feasible without a very precise knowledge of mb:
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Extraction of fBs
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Conclusions

The effective continuum threshold seff is an important ingredient of the method of dispersive sum
rules which determines to a (very) large extent the numerical values of the extracted hadron
parameter. Finding a criterion for fixing seff poses a problem in the method of sum rules.

• seff depends on the external kinematical variables (e.g., momentum transfer in sum rules for 3-
point correlators and light-cone sum rules) and “unphysical” parameters (renormalization scale
µ, Borel parameter τ). Borel-parameter τ-dependence of seff emerges naturally when trying to
make quark-hadron duality more accurate.

•We proposed a new algorithm for fixing τ-dependent seff, for those problems where the ground-
state mass MQ is known. We have tested that our algorithm leads to more accurate values of
ground-state parameters than the “standard” algorithms used in the context of dispersive sum
rules before. Moreover, our algorithm allows one to probe “systematic” (≡ “intrinsic”) uncer-
tainties related to the limited accuracy of the extraction procedure in the method of QCD sum
rules.

• We reported the decay constants of D, Ds, B, Bs mesons which along with the “statis-
tical” errors related to the uncertainties in the QCD parameters, for the first time include
realistic “systematic” errors.

Many other results are to come.


