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Abstract

This talk is devoted to the recent progress in the method of the

lightcone coordinates in QCD. We show that boundary gauge fields are

crucial for the consistent and complete definition of the theory. The

result is important for the theory of high energy QCD evolution, since

scattering amplitudes are directly related to the lightcone Hamiltonian,

whose complete structure is still unclear on quantum level. Namely,

there exists the problem to construct a quantum algebra of observables

in lightcone QCD beyond the perturbative regime. Careful analysis shows

that we have the problems with: canonical commutation relations, spatial

invariance, and the boundary degrees of freedom in the Hamiltonian.
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1 Introduction

There exists three main theoretical methods in high energy QCD:

• Feynman diagrams (Lipatov, Braun, Kovchegov, . . . ).

• Path integral (McLerran, Hatta, Balitski, . . . ).

• Quantum Hamiltonian (Kovner, Lublinsky, Mueller, . . . ).

There are two typical coordinates here:

– cartesian coordinates.

– lightcone coordinates .

While in the cartesian coordinates the complexity of the theory is pushed

entirely into the quantum level (wave function), in the lightcone coordi-

nates it remains mostly in the classical level via the complicated structure

of the phase space and the complicated Hamiltonian.
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Why the complete lightcone QCD Hamiltonian is so important?

• The evolution of amplitudes of high energy scattering in QCD [1].

• JIMWLK/BK equations and NLO corrections. Very simple deriva-

tion.

• Powerful generalization of BFKL in the framework of evolution

equations. Unification of pomeron loops and pomeron poles.

• Multiple gluon production and other exclusive processes.

• A possible way to the nonperturbative area of QCD?

Advantages of the lightcone method:

• Only operator algebra. No diagrams.

• Life in the physical Hilbert space directly related to observables.

• Trivial vacuum.

• Correctly removed gauge freedom. No ghosts, no zero modes.
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2 How to quantize lightcone QCD?

Our road map is:
1. Fix the gauge freedom.

2. Construct the classical phase space.

3. Construct the classical Hamiltonian.

4. Quantize the theory.

(a) To construct a Poisson algebra with a Hamiltonian. This

algebra will be used as an algebra of classical observables.

(b) To quantize the Poisson algebra. To construct a Hilbert space

and canonical commutation relations.

(c) To resolve possible ordering ambiguities in the quantum-classical

operator correspondence.
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3 Classical lightcone QCD

To quantize the theory we must identify the degrees of freedom. In

lightcone theories, it is the well known fact [2] that boundary conditions

at x− = ∞ are crucial for physical consequences. Namely, choosing

a different boundary condition, we obtain a different physic. Hence, in

addition to the bulk fields, we must consider the boundary degrees of

freedom.

• There is no natural choice of a boundary condition in QCD!

• Hence, gauge field at x− = ±∞ is not zero.

• Moreover, if the gauge group is non-Abelian and there are four

or more space-time dimensions, then the boundary condition at

x− = ±∞ is neither antisymmetric nor symmetric.

• Using residual gauge freedom, we can set the gauge field at x− =

−∞ to zero.
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The main gauge fixing is

A− = 0 (1)

The gauge fixing (1) is not complete. There exist gauge transformations

that does not change A−. In fact, any U(~x), which does not depend

on x−, is a symmetry of the dynamical system. So, after imposing the

constraint (1), we again have the opportunity to impose an external

constraint that does not miss physical information. This is a residual

gauge freedom. We use it to impose the following realizable additional

gauge constraint:

Ai(−∞, ~x) = 0 (2)

Let γi(~x) be value of a field Ai(x
−, ~x) at the boundary x− = +∞

γi(~x) = Ai(+∞, ~x) (3)

The field γi play the important role in the story. It is not zero and it

arises in the Hamiltonian and affect scattering amplitudes in NLO!
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4 Failure of the canonical method

• Conventional canonical methods cannot treat fields at boundaries.

• The situation becomes even more difficult if a theory has con-

straints. To handle second class constraints, one should to con-

struct the Dirac bracket which can be properly defined only in a

finite-dimensional case.

• In an infinite-dimensional case, due to the existence of surface

integrals, there exists the problem to define the naive variational

derivative.

In this work we employ the symplectic Faddeev-Jackiw method [3] which

allows to handle fields at the infinity:

• The symplectic method does not use variational derivative.

• A symplectic structure have no problems with the appearance of

surface integrals.

• The residual gauge freedom can be properly fixed in a rigorous way.
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5 Main features of the symplec-
tic method

The Lagrangian of QCD directly gives the following triple:

• Configuration field manifold V

• Symplectic form ω

• Hamiltonian function H.

If a theory has a gauge invariance, then the symplectic form ω is degenerate.

To construct the physical space we have to perform the following recursive

procedure:

1. Take the bare phase space: symplectic triple (V, ω,H).

2. Factorization of Kerω. Kerω gives a foliation of the symplectic

manifold.

3. Reduction of the Hamiltonian on V/Kerω.

4. Obtain new symplectic triple (V1, ω1, H1) and go to the step 1.
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The procedure ends when new symplectic triple becomes equal to previous

one

(V1, ω1, H1) = (V, ω,H)

In QCD, the symplectic method with the gauge fixing gives the following

phase structure:

• The symplectic form is

ω =

∫
∂−dA

a
i ∧ dAa

i (4)

• The bare configuration space {A+, A−, π
−, Ai} is reduced to the

purely transverse gauge potentials {Ai}.

• The complete set of Gauss constraints , including boundary fields.

• The Hamiltonian involving boundary fields.

• γi is not independent variable and is the functional γ[Ã]

During this calculations, we don’t impose any boundary condition.
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6 The classical Hamiltonian

The phase space of the theory is the space of fields Ãi(x
−, ~x) that obey

Ãi(+∞, ~x) = −Ãi(−∞, ~x). The symplectic form is ω =
∫
∂−dÃ

a
i ∧

dÃa
i . The boundary field γai (~x) is determined by the two following equa-

tions:

∂iγ
a
j − ∂jγai + gfabcγ

b
iγ

c
j = 0 (5)

∂iγ
a
i (~x) =

g

2
fabcγ

b
iγ

c
i +

+∞∫
−∞

(
gfabc∂−Ã

b
iÃ

c
i − gJ+

a

)
dx− (6)

where J+
a is an external current. The original gauge fields Ai is related

to Ãi as

Ãi(x
−, ~x) = Ai(x

−, ~x)− 1

2
γi(~x) (7)

The momentum π−a (x
−, ~x) is determined by condition π−a (±∞, ~x) =

0 and the constraint

∂−π
−
a + ∂−∂iA

a
i − gfabc∂−Ab

iA
c
i + gJ+

a = 0 (8)
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The Hamiltonian is given by

H [Ãi] =
1

2
(π−a )

2 +
1

4
F a
ij[Ai]F

ij
a [Ai]− gAa

iJ
i
a (9)

The properties of the obtained Hamiltonian are:

• It involves the boundary field γi both explicitly and implicitly.

• For 4D it has infinite number of terms .

• For 4D it has infinite power over the coupling constant g.

• The perturbative expansion can be performed in a controlled way.

• First-order of the perturbative expansion gives γi = 0 and

H = H0 + g∂iÃ
a
i

1

∂−
j+a + gÃa

i j
a
i (10)

• In the next order the g4-correction to JIMWLK equation can be

obtained, which involves γi.

The complete derivation of the lightcone Hamiltonian is given in Ref. [4].
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7 The problem of quantization

There exists the problem to construct a quantum algebra of observables

in lightcone QCD beyond the perturbative regime [5]. To quantize the

theory we have to construct a Poisson algebra and quantize it.

Careful analysis will show that the Poisson formulation has the prob-

lem with either:

• canonical commutation relations

• spatial invariance

• boundary degrees of freedom in the Hamiltonian

We have analyzed three currently known variables: A, Ã, and c.

Natural variables Aa
i . To construct a Poisson algebra from our sym-

plectic dynamical system we have to invert the symplectic form ω and to

construct a Poisson brackets. Let us try to invert the symplectic form in

the linear space of fields obeying the boundary condition Aa
i (−∞) = 0.
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We have to find a linear operator P (x− y) such that

ω

(
A,

∫
P (x− y)B(y)dy

)
=

∫
ABdx (11)

It is easy to check that for the variables Aa
i there exists only one such

operator

P (x) =
1

2
θ(−x) (12)

where θ(x) is the standard step function. The result (12) has a fatal

problem: the kernel P (x) is not antisymmetric. Hence, a naive Poisson

brackets does not exist and the variables Aa
i cannot generate a Poisson

algebra of observables.

Antisymmetric variables Ãa
i . From the wide practice of lightcone field

theories we know that the antisymmetric conditions induces a well-defined

Poisson algebra. The symplectic form ω is invertible and the correspond-

ing inverse kernel is

P (x) = −1
4
ε(x) (13)

However, the fatal problem here is that the lightcone QCD Hamiltonian
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has an implicit dependence over the boundary field γi. To extract it, we

calculate an infinitesimal variation δH̃ over a variation of the canonical

variables δÃ. The boundary contribution to the variation δH̃ is

δH̃
∣∣
boundary

= −
∫

x−,~x

g

4
fabcπ

−
a δγ

b
iγ

c
i ∼ O(g3) (14)

The boundary variation can not be converted to a bulk one, since there

exists an obstruction that the color-space 1-form fabcdγ
bγc is not exact

and not closed, except the case of a one-dimensional color space. So,

the Hamiltonian is not an element of the bulk Poisson algebra and the

standard method of quantization can not be applied.

Boundaryless variables cai . The another attempt to separate the bound-

ary contribution is proposed in Ref. [1]. The idea is to express a boundary

contribution to a bulk one. Let us define new fundamental variables cai
with zero boundary conditions as

Aa
i (x
−, ~x) = cai (x

−, ~x) + γai (~x)ϕ(x
−) (15)
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where ϕ(x−) is an arbitrary fixed global function such that

ϕ(−∞) = 0

ϕ(+∞) = 1
(16)

It is helpful to imagine ϕ(x−) as a typical smooth monotonic kink-like

function. So, we have cai (±∞) = 0. This gives the new Hamiltonian

H [c], which variation δH [c] is well defined.

The first problem of this method is that the fundamental brackets

{c(x1), c(x2)} becomes very nonlinear. Although we have no methods

how to quantize this nonlinear brackets, in principle, we can hope that

a solution exist. The usage of variables cai has the one more problem.

Since the function ϕ(x−) explicitly depends on x−, it breaks the longitu-

dinal spatial invariance of the Hamiltonian. This problem is most serious

because there are no preferred points in the initial formulation of the

theory.
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8 Conclusions

The theory of lightcone QCD has the following features:

• The boundary fields at x− =∞ play the important role.

• The symplectic method is most productive in this case.

• The boundary fields γi affect on physical scattering amplitudes

beyond the leading order.

• The structure of the classical phase space is linear symplectic space.

• For 4D space-time and non-Abelian group the Hamiltonian has:

– infinite number of terms.

– infinite power over the coupling constant g.

• The quantum structure of lightcone QCD is still not clear. Beyond

leader order the theory can not be directly quantized.

• Careful analysis shows that a Poisson formulation has the problems

with: canonical commutation relations, spatial invariance, and the

boundary degrees of freedom in the Hamiltonian.
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