based on PRD84,2011; 1108.4344 [hep-ph]; 1109.2718 [hep-ph]

Pion-photon transition form factor in light-cone sum rules: theoretical results, expectations, and a global-data fit.

S. Mikhailov¹, A. Bakulev¹, A. Pimikov¹, and N. Stefanis²

¹ Bogoliubov Laboratory of Theoretical Physics, Dubna, Russia ²Ruhr-Universität Bochum, Germany

> QFTHEP'2011, Sochi, September 25th – October 1st

> > September 25, 2011

Why it is interesting for QCD?

- ► The measurements of $\gamma^* \gamma \rightarrow \pi^0$ form factor in **CELLO91**, **CLEO98**, and especially **BaBar09** experiments have **the best accuracy** among others exclusive hard processes
- We have significant theoretical advances in QCD here: high order NNLO_β contribution to the hard part of the form factor; also the contributions from twist-4 and higher order inverse power corrections a'la twist-6
- The data of BaBar09 Collab. for this process creates the pion puzzle – the challenge to collinear QCD

These authors claimed (2011): "If the experiment is correct, many theoretical predictions should be revised..." Current status of the the pion puzzle [September 2011, PhiPsi'11]

BaBar Collaboration reports:

"Transition form factors and two-photon physics from BaBar"

- ▶ They confirmed 'status quo': "An unexpected Q^2 dependence of the $\gamma^* \gamma \to \pi^0$ form factor is observed"
- ► "The next measurement of the pion-photon transition form factor confirming or refuting BABAR result will be performed at Super-B factories in 5-10 years."

Belle Collaboration reports:

"Recent results on two-photon physics at Belle "

 \blacktriangleright No expected news concerning the $\gamma^*\gamma \rightarrow \pi^0$ form factor

Plan - to present the Theoretical Basis of the consideration

- 1. $\gamma^*(\boldsymbol{q}_1)\gamma^*(\boldsymbol{q}_2) o \pi^0(\boldsymbol{p})$, factorization, structure of $\mathsf{F}^{\gamma^*\gamma^*\pi}$
 - Introduction to collinear factorization
 - Hard-scattering amplitudes in NLO, T₁, NNLO, T₂, meson Distribution Amplitudes (DA) φ
- 2. Pion Distribution Amplitudes φ_{π}
 - Nonlocal condensates and BMS bunch of pion DAs
- 3. Light Cone Sum Rules (LCSR) for $\gamma^*\gamma(q_2^2\simeq 0)$
 - \blacktriangleright Why Light Cone Sum Rules (LCSR)? Dispersion relations for ${\bf F} \gamma^* \gamma \pi$
 - NLO Spectral density ρ₁
 - Direct predictions of $F_{LCSR}^{\gamma^*\gamma\pi}$ vs CELLO and CLEO data
- 4. High order corrections
 - β_0 -part of NNLO spectral density ρ_2 and "twist 6" contribution
 - The result of high order contributions to ${{f F}^{\gamma^*\gamma\pi}}$

Plan - to present the fit of experimental data

- 1. Direct predictions of $F_{LCSR}^{\gamma^*\gamma\pi}$ vs CELLO, CLEO and BaBar data
- 2. Inverse Problem: fitting pion DA from experimental data
 - ► 3D analysis of pion DA
 - 2D analysis of pion DA
- 3. 2D Constraints and Lattice QCD
- 4. Conclusions

 $\gamma^*(q_1)\gamma^*(q_2) \to \pi^0(p)$, collinear factorization, and structure of $\mathsf{F}^{\gamma^*\gamma^*\pi}$

 $\gamma^*(q_1)\gamma^*(q_2)
ightarrow \pi^0(P)$ in pQCD

Collinear factorization at $Q^2, q^2 \gg (hadron \ scale \sim m_{
ho})^2$

$$F^{\gamma^*\gamma^*\pi}(Q^2,q^2) = T(Q^2,q^2,\mu_F^2;x) \otimes \varphi_{\pi}^{(2)}(x;\mu_F^2) + O(\frac{1}{Q^4})$$

 μ_F^2 - boundary between hard scale and hadronic one. For leading twist 2 and at parton level

Distribution amplitudes in exclusive reactions

$$<0|\bar{q}(z)\gamma_{\mu}\gamma_{5}E(z,0)q(0)|\pi(P)>\Big|_{z^{2}=0} = iP_{\mu}f_{\pi} \int dx e^{ix(zp)}\varphi_{\pi}^{(2)}(x,\mu_{F}^{2})$$
$$E(z,0) = P\exp(ig\int_{0}^{z}A_{\mu}(\tau)d\tau^{\mu})$$

Distribution amplitudes are **nonperturbative** quantities to be derived from

- QCD SR [CZ 1984], NLC QCD SR [M&Radyushkin1988-91,Bakulev&M&Stefanis1998,2001–04]
- instanton-vacuum approaches, [Dorokhov et al. 2000; Polyakov et al. 1998, 2009]
- Lattice QCD, [Braun et al. 2006; Arthur et al. 2011]
- ▶ from experimental data [Schmedding&Yakovlev 2000, BMS 2003-2006]

But DA evolves with μ_F^2 according to ERBL equation in pQCD

NLO evolution DA with scale μ^2

 $\varphi(x; \mu^2) \rightarrow \varphi(x; Q^2)$ evolves according to NLO ERBL [79-80] equation:

$$\mu^{2} \frac{d}{d\mu^{2}} \varphi(\mathbf{x}; \boldsymbol{\mu}^{2}) = \left(a_{s} \boldsymbol{V}_{+}^{(0)}(\mathbf{x}, y) + a_{s}^{2} \boldsymbol{V}_{+}^{(1)}(\mathbf{x}, y)\right) \otimes \varphi(\mathbf{y}; \boldsymbol{\mu}^{2})$$
$$\left(\boldsymbol{V}^{(0)} = \boldsymbol{V}^{a} + \boldsymbol{V}^{b}\right) \otimes \psi_{n} = 2C_{\mathrm{F}} \boldsymbol{v}(\boldsymbol{n}) \cdot \psi_{n}$$

Eigenfunctions: $\psi_n(x) = 6x\bar{x} \ C_n^{(3/2)}(x-\bar{x}) - \text{Gegenbauer harmonics}$

Eigen modes: v(n)

$$\mathbf{v}(\mathbf{n})$$

$$\varphi_{\pi}^{(2)}(x;\mu^2) = \psi_0(x) + a_2(\mu^2) \ \psi_2(x) + a_4(\mu^2) \ \psi_4(x) + a_6(\mu^2) \ \psi_6(x) + \dots$$

NLO and NNLO amplitudes.

Collinear factorization is Theorem [Efremov&Radyushkin 1978]

$$\begin{array}{ll} F^{\gamma^*\gamma^*\pi} &\sim & \left(T_0(Q^2,q^2;x) + a_s^1 \ T_1(Q^2,q^2;\mu_F^2;x) \right. \\ & + a_s^2 \ T_2(Q^2,q^2;\mu_F^2;\mu_R^2;x) + \ldots \right) \otimes \ \varphi_{\pi}^{(2)}(x;\mu_F^2) \\ & - \delta_{tw4}^2(\mu_F^2) \cdot T_0^2(Q^2,q^2;x) \otimes \ \varphi_{\pi}^{(4)}(x) \end{array}$$

 T_i — calculable in pQCD, $a_s(\mu_R^2) = \alpha_s/(4\pi)$. Usually sets $\mu_R^2 = \mu_F^2$ to simplify and $\mu_F^2 = \langle Q^2 \rangle$ to minimize rad. corrections. $\delta_{tw4}^2 = (0.19 \pm 0.02) \text{ GeV}^2$ – twist-4 scale parameter.

LO:
$$T_0(Q^2, q^2; x) = \frac{1}{x \ Q^2 + \bar{x} \ q^2}$$

NLO hard amplitudes

NLO (last editions):

[Bakulev&MS&Stefanis(2003)], [Melić&Müller&Passek(2003)] $T_{1}(x; Q^{2}, q^{2}) \otimes \varphi(x) = T_{0}(Q^{2}, q^{2}; y) \otimes \left\{ C_{F} \mathcal{T}^{(1)}(y, x) + \mathbf{L}(y) \cdot \mathcal{V}^{(0)}(y, x) \right\} \otimes \varphi(x; \mu_{F}^{2})$ $\mathcal{T}^{(1)} = \left[-3 \mathcal{V}^{b} + \mathbf{g} \right](x, y)_{+} - 3\delta(x - y), \qquad \mathbf{L}(y) \equiv \ln \left[\left(Q^{2}y + q^{2}\bar{y} \right) / \mu_{F}^{2} \right]$

$$\mathbf{g}(x,y) = -2\frac{\theta(y > x)}{y - x} \ln \left(1 - x/y\right) + (x \to \bar{x}, \ y \to \bar{y})$$

NNLO amplitude and coefficient functions

 β_0 -part of NNLO: $T_2 \otimes \varphi \rightarrow \beta_0 \cdot T_\beta \otimes \varphi$, at $\mu_{\rm R}^2 = \mu_{\rm F}^2$ [Melić&Müller&Passek(2003)]

$$\begin{aligned} a_s^2 \beta_0 T_\beta \otimes \varphi &= a_s^2 \beta_0 T_0 \otimes \left\{ C_F \mathcal{T}_\beta^{(2)} - C_F L(\mathbf{y}) \cdot \mathcal{T}^{(1)} \right. \\ &+ \left. L(\mathbf{y}) \cdot \left(\mathbf{V}_\beta^{(1)} \right)_+ \\ &- \frac{1}{2} L^2(\mathbf{y}) \cdot \mathbf{V}_+^{(0)} \right\} \otimes \varphi. \end{aligned}$$

The origins of these terms: ~ $L(y) T^{(1)} - 1$ -loop RG-evolution ~ $L^{2}(y) V^{(0)}_{+} - 1$ -loop ERBL-evolution together with RG- a_{s} one, while ~ $L(y) (V^{(1)}_{\beta})_{+}$ - as the β_{0} -part of 2-loop ERBL kernel; ~ $T^{(2)}_{\beta}$ - the β_{0} -part of the coefficient function $T^{(2)}$ These terms together form the exponential ERBL-solution:

$$\exp\left\{\int^{\mathbf{L}} \mathbf{V}(a_s(L)) dL\right\}$$

 $\tau_{\beta}^{(2)}$ - the coefficient function - original, the most cumbersome part This contribution gives the sign and size of NNLO effect following to BLM prescription Pion Distribution Amplitude in QCD SR with Nonlocal condensates

Pion distribution amplitude in NLC QCD SRs

$$\begin{split} \varphi_{\pi}^{(2)}(x;\mu_{\rm F}^2) &= \psi_0(x) + a_2(\mu_{\rm F}^2) \ \psi_2(x) + a_4(\mu_{\rm F}^2) \ \psi_4(x) + \dots \\ \varphi_{\pi}^{(2)} \Leftrightarrow \{a_n\}; \quad \text{partial waves: } \psi_n(x) = 6x\bar{x} \ C_n^{(3/2)}(x-\bar{x}) \ \text{(Gegenbauer harmonics)} \end{split}$$

BMS estimates for a₂, a₄ [PLB 508 (2001) 279]

- Green rectangle forms BMS "bunch" of DAs, $\psi_0 + a_2\psi_2 + a_4\psi_4$ (Best-fit values—thick green line RHS: $a_2 = 0.2$, $a_4 = -0.14$)
- ▶ ψ_0 Asymptotic (As) DA (dotted line: $a_{2n} = 0$)
- Chernyak-Zhitnitsky (CZ) DA, $\psi_0 + a_2\psi_2$ (red dashed line RHS: $a_2(\mu^2 = 1 \text{ GeV}^2) = 0.56$, $a_4 = 0$)
- "Flat distribution" corresponds to $a_n \sim 1/n$

Light Cone Sum Rules (LCSR)

Why Light Cone Sum Rules (LCSR)?

The experimental conditions prefer $q^2 \rightarrow 0$ For $Q^2 \gg m_\rho^2$, $q^2 \ll m_\rho^2$ pQCD factorization valid only in leading-twist approximation; hence, higher twists become important. Reason: if $q^2 \rightarrow 0$, one needs to take into account interaction of real photon at long distances of order of $O(1/\sqrt{q^2})$

pQCD is OK

photon behaves like a hadron

LCSR effectively accounts for long-distance effects of real photon using [Khodjamirian, EJPC (1999)]:

- dispersion relation in variable q^2
- quark-hadron duality in vector channel.

Dispersion relation for $F^{\gamma^*\gamma\pi}$

The main further goal – spectral density ρ

$$F^{\gamma^*\gamma^*\pi}(Q^2,q^2) = \int_0^\infty ds \ \frac{\rho^{\mathrm{ph}}(Q^2,s)}{s+q^2}$$

$$ho^{\mathrm{ph}} = heta(s_0-s) \
ho^{\mathrm{phen}}(Q^2,s) + heta(s-s_0) \
ho^{\mathrm{PT}}(Q^2,s)$$

$$\rho^{\mathbf{PT}}(\mathbf{Q}^2, \mathbf{s}) = \frac{\mathrm{Im}}{\pi} \Big[F^{\gamma^* \gamma^* \pi}(\mathbf{Q}^2, -\mathbf{s} - i\varepsilon) \Big]$$

$$\rho^{\mathrm{phen}}(\mathbf{Q}^2, \mathbf{s}) = \sqrt{2} f_{\rho} F^{\gamma^* V \pi}(\mathbf{Q}^2) \cdot \delta(\mathbf{s} - m_V^2) \Big|_{V = \rho, \omega}$$

using quark-hadron duality in vector channel for $F^{\gamma^* V \pi}$ [Khodjamirian 1999]:

$$\begin{split} F^{\gamma\gamma^*\pi}(Q^2,q^2\to 0) &= \frac{1}{\pi} \int_{s_0}^{\infty} \frac{\mathrm{Im}F^{\gamma^*\gamma^*\pi}(Q^2,-s)}{s} \, ds, \quad \text{"H-part"} \\ &+ \frac{1}{\pi} \int_{0}^{s_0} \frac{\mathrm{Im}F^{\gamma^*\gamma^*\pi}(Q^2,-s)}{m_\rho^2} \, e^{(m_\rho^2-s)/M^2} ds, \quad \text{"V-part"} \end{split}$$

 $s_0 \simeq 1.5 \text{ GeV}^2$ – effective threshold in vector channel, M^2 -Borel parameter depends on Q^2 , $M^2 = 0.7 / \langle x \rangle_{Q^2} = 0.7 - 0.9 \text{ GeV}^2$. NLO Spectral density $\rho^{(1)}$

$$ho^{(1)}(Q^2,s) = rac{\mathsf{Im}}{\pi} \left[(T_1 \otimes arphi_\pi) (Q^2, -s - i arepsilon)
ight], \ s \geq 0$$

 $ho_n^{(1)}(x,\mu_{
m F}^2)$ for Gegenbauer harmonic $\psi_n,\;x=Q^2/(s+Q^2)$

The general case [M&Stefanis(2009)], partly corrected in [Agaev et al (2011)]:

$$\bar{\rho}_{n}^{(1)}\left(x;\mu_{\rm F}^{2}\right) = C_{\rm F}\left\{-3\left[1+\boldsymbol{v}^{\boldsymbol{b}}(\boldsymbol{n})\right]+\frac{\pi^{2}}{3}-\ln^{2}\left(\frac{\bar{x}}{x}\right)+2\boldsymbol{v}(\boldsymbol{n})\ln\left(\frac{\bar{x}}{x}\frac{Q^{2}}{\mu_{\rm F}^{2}}\right)\right\}\psi_{\boldsymbol{n}}(x)$$
$$-C_{\rm F}2\left[\sum_{l=0,2,\dots}^{n}\boldsymbol{G}_{nl}\psi_{l}(x)+\boldsymbol{v}(\boldsymbol{n})\cdot\left(\sum_{\boldsymbol{m}=1,2,\dots}^{n}\boldsymbol{b}_{nm}\psi_{\boldsymbol{m}}(\boldsymbol{x})-3\bar{\boldsymbol{x}}\right)\right]$$

 G_{nl} (originates from g), b_{nl} – calculable triangular matrices

The partial case $\bar{\rho}_0^{(1)}$ [Schmedding&Yakovlev (2000)]:

$$\bar{\rho}_{0}^{(1)}(x) = C_{\rm F} \left[-5 + \frac{\pi^2}{3} - \ln^2 \left(\frac{\bar{x}}{x} \right) \right] \psi_0(x)$$

Conclusion: The NLO spectral density and $F^{\gamma\gamma^*\pi}$ are obtained for Any numbers of Gegenbauer harmonics

NLO LCSR vs. CELLO (\blacklozenge) & CLEO (\blacktriangle) data

Radiative corrections contribute up to -17% at low/moderate Q^2

- ▶ BMS "bunch" describes rather well all data above $Q^2 \gtrsim 1.5 \text{ GeV}^2$ at $\chi^2_{\text{ndf}} = 0.6 \div 1$;
- Low-Q² CELLO data excludes Asy DA
- high-Q² CLEO data excludes CZ DA

These latter items confirm the first observations by [Kroll et al (1996)]

High order corrections:

NNLO $_{\beta_0}$ and twist 6 contributions to $Q^2 F^{\gamma^* \gamma \pi}$

NNLO_{β_0} Spectral density [M&Stefanis(2009)]

$$\rho^{(2)}(Q^2, s) = \frac{\mathrm{Im}}{\pi} \left[(T_2 \otimes \varphi_\pi) (Q^2, -s - i\varepsilon) \right], \ s \ge 0$$

$$\bar{\rho}_n^{(2)} \rightarrow \bar{\rho}_n^{(2\beta)}(Q^2, x) = \beta_0 C_{\mathrm{F}} \left[\bar{R}_n^{(2)} \left(x; \frac{\bar{x}}{x} \frac{Q^2}{\mu_{\mathrm{F}}^2} \right) \right], \ x = Q^2 / (s + Q^2), \ \text{put} \ \mu_{\mathrm{R}}^2 = \mu_{\mathrm{F}}^2$$

The dashed green line shows $a_s(\mu_F^2) \bar{\rho}_0^{(2\beta)} = a_s(\mu_F^2) \beta_0 C_F \bar{R}_0^{(2)}(x, \bar{x}/x)$ at the typical CLEO scale $\langle Q^2 \rangle = \mu_F^2 = (2.4 \text{ GeV})^2$, whereas the solid red line represents $\bar{\rho}_0^{(1)}(x)$ Conclusion: The NNLO_β spectral density and $F^{\gamma\gamma\gamma^{*}\pi}$ are obtained for 6 numbers of Gegenbauer harmonics

Main Ingredients of Spectral Density

We denote

 $\rho(Q^2,s) = \rho^{(0)}(Q^2,s) + a_s \rho^{(1)}(Q^2,s) + a_s^2 \rho^{(2)}(Q^2,s)$

NLO Spectral Density — in [Mikhailov&Stefanis(2009)], partially corrected in [ABOP(2011)]:

 $ho^{(1)}(Q^2,s) = rac{\mathrm{Im}}{\pi} \left[\left(T_1 \otimes arphi_\pi
ight) \left(Q^2, -s - i arepsilon
ight)
ight] , s \geq 0$

Main Ingredients of Spectral Density

We denote

 $\rho(Q^2,s) = \rho^{(0)}(Q^2,s) + a_s \rho^{(1)}(Q^2,s) + a_s^2 \rho^{(2)}(Q^2,s)$

NLO Spectral Density — in [Mikhailov&Stefanis(2009)], partially corrected in [ABOP(2011)]:

$$ho^{(1)}(Q^2,s) = rac{\mathrm{Im}}{\pi} \left[\left(T_1 \otimes arphi_\pi
ight) \left(Q^2, -s - i arepsilon
ight)
ight] \, , s \geq 0$$

• NNLO_{β_0} Spectral Density — in [M&S(2009)] $\rho^{(2,\beta)}(Q^2,s) = \beta_0 \frac{\text{Im}}{\pi} \left[(T_{2\beta} \otimes \varphi_{\pi}) (Q^2, -s - i\varepsilon) \right], s \ge 0$ Both $\rho^{(1)}$ and $\rho^{(2,\beta)}$ are obtained for arbitrary Gegenbauer harmonic.

Main Ingredients of Spectral Density

We denote

 $\rho(Q^2,s) = \rho^{(0)}(Q^2,s) + a_s \rho^{(1)}(Q^2,s) + a_s^2 \rho^{(2)}(Q^2,s)$

NLO Spectral Density — in [Mikhailov&Stefanis(2009)], partially corrected in [ABOP(2011)]:

$$ho^{(1)}(Q^2,s) = rac{\mathrm{Im}}{\pi} \left[\left(T_1 \otimes arphi_\pi
ight) \left(Q^2, -s - i arepsilon
ight)
ight] \, , s \geq 0$$

- **NNLO**_{β0} Spectral Density in [M&S(2009)] $\rho^{(2,\beta)}(Q^2,s) = \beta_0 \frac{\text{Im}}{\pi} \left[(T_{2\beta} \otimes \varphi_{\pi}) (Q^2, -s i\varepsilon) \right], \ s \ge 0$ Both $\rho^{(1)}$ and $\rho^{(2,\beta)}$ are obtained for arbitrary Gegenbauer harmonic.
- "Tw-6" contribution in [ABOP–PRD83(2011)0540020]

$$\rho^{\rm tw6}(Q^2,x) = 8\pi C_F \frac{\alpha_s \langle \overline{q}q \rangle^2}{N_c f_\pi^2} \frac{x^2}{Q^6} \Biggl[2x {\rm ln} x \overline{x} - x + 2\delta(\overline{x}) - \left[\frac{1}{1-x}\right]_+ \Biggr]$$

High order corrections result

Twist-6 and NNLO_{β_0} contributions to the $Q^2 F^{\gamma^* \gamma \pi} (Q^2)$ with BMS-like Pion DA

They practically cancel out each other [BMPS(2011)]

We use this residual as theoretical uncertainty of our prediction, that provides us with an additional 3%-uncertainty.

Pie chart for Pion-Photon TFF at $Q^2 = 8~{ m GeV}^2$

Result is dominated by Hard Part of Twist-2 LO contribution.

Blue = negative terms Red = positive terms

QFTHEP'2011@Sochi (Russia)

Pie chart for Pion-Photon TFF at $Q^2 = 8~{ m GeV}^2$

- Result is dominated by Hard Part of Twist-2 LO contribution.
- Twist-6 contribution is taken into account together with NNLO_{β₀} one — they has close absolute values and opposite signs.

Blue = negative terms Red = positive terms

Parameters of LCSRs

QFTHEP'2011@Sochi (Russia)

Direct Problem: LCSRs Results for Pion-Gamma Transition FF

QFTHEP'2011@Sochi (Russia)

Pion-gamma FF vs Experimental Data

Comparison with all data: CELLO, CLEO and BaBar

J BMS bunch describes very good all data for $Q^2 \le 9$ GeV².

QFTHEP'2011@Sochi (Russia)

Pion-gamma FF vs Experimental Data

Comparison with all data: CELLO, CLEO and BaBar

J BMS bunch describes very good all data for $Q^2 \leq 9$ GeV².

● Note added BaBar $\gamma^* \gamma \rightarrow \eta, \eta'$ and $e^+e^- \rightarrow \gamma \eta, \gamma \eta'$ data (1101.1142[hep-ex]): All they are inside BMS strip !

Pion-gamma FF vs Experimental Data

Comparison with all data: CELLO, CLEO and BaBar

J BMS bunch describes very good all data for $Q^2 \leq 9$ GeV².

- **●** Note added BaBar $\gamma^* \gamma \rightarrow \eta, \eta'$ and $e^+e^- \rightarrow \gamma \eta, \gamma \eta'$ data (1101.1142[hep-ex]): All they are inside BMS strip !
- ABOP models are in between two sets of BaBar data.

Inverse Problem: Fitting Pion DA from experimental data

Confidential Regions

QFTHEP'2011@Sochi (Russia)

Fitting pion DA under LCSR

• We fitted experimental data on $\pi\gamma$ TFF by varying Gegenbauer coefficients of Pion DA.

Fitting pion DA under LCSR

Section 9 Section 10 Section

• Two sets of experim. data $(1 - 9 \text{ GeV}^2 \& 1 - 40 \text{ GeV}^2)$ were analyzed to show the influence of BaBar Data on Pion DA.

Fitting pion DA under LCSR

Section 9 Section 10 Section

• Two sets of experim. data $(1 - 9 \text{ GeV}^2 \& 1 - 40 \text{ GeV}^2)$ were analyzed to show the influence of BaBar Data on Pion DA.

Fit based on LCSRs with NLO+Tw4+3 Gegenbauers

QFTHEP'2011@Sochi (Russia)

How many harmonics take into account?

The goodness-of-fit χ^2_{ndf} -criterion vs conventional error (68.3% CL) as a function on number *n* of fit parameters

- Goodness stable, while the error grows with n
- The compromise at $\chi^2_{ndf} \approx 0.5$ and n = 2, 3 is enough.

BLTP JINR

How many harmonics take into account?

The goodness-of-fit χ^2_{ndf} -criterion vs conventional error (68.3% CL) as a function on number *n* of fit parameters

For fitting 1 - 40 Gev² data region one should take $n \ge 3$ parameters.

BLTP JINR

BMPS [PRD84(2011)034014]: 3D 1σ -error ellipsoid at $\mu_{SY} = 2.4$ GeV scale without $\Delta \delta_{tw4}^2$ uncertainty

Good agreement of all data at $Q^2 \le 9$ GeV² At 68.3% CL we have good intersection $2D \cap 3D \cap 4D \ne \oslash$

QFTHEP'2011@Sochi (Russia)

BMPS [PRD84(2011)034014]: 3D 1σ -error ellipsoid at $\mu_{SY} = 2.4$ GeV scale without $\Delta \delta_{tw4}^2$ uncertainty

Data Set $1 - 9 \text{ GeV}^2$ $\Rightarrow 2D \text{ projection of} 1\sigma \text{-error ellipsoid}$ $\checkmark \Leftrightarrow \chi^2_{ndf} \approx 0.4$ $\chi \Leftrightarrow BMS \text{ model with} \chi^2_{ndf} \approx 0.5$

Best-fit = $(0.17, -0.14, 0.12 \pm 0.14)$ BMS = (0.14, -0.09)

Good agreement of all data at $Q^2 \le 9$ **GeV**² At 68.3% CL we have good intersection $2D \cap 3D \cap 4D \ne \oslash$

BMPS [PRD84(2011)034014]: 3D 1σ -error ellipsoid at $\mu_{SY} = 2.4$ GeV scale without $\Delta \delta_{tw4}^2$ uncertainty

Bad agreement of all data at $Q^2 \le 40 \text{ GeV}^2$ At 68.3% CL we have no intersection $2D \cap 3D = \emptyset$, $3D \cap 4D = \emptyset$.

NLC-bunch and lattice prediction at $\mu_{SY} = 2.4$ GeV scale with accounting for $\Delta \delta_{tw4}^2$ uncertainty. DAs: $\blacklozenge \Leftrightarrow$ Asymp., $\blacktriangle \Leftrightarrow ABOP-3$, $X \Leftrightarrow BMS$, $\blacksquare \Leftrightarrow CZ$ Lattice'10 estimate of a_2 are shown by vertical lines.

QFTHEP'2011@Sochi (Russia)

2D-Analysis of the data at $\mu_{SY} = 2.4$ GeV scale with accounting for $\Delta \delta_{tw4}^2$ uncertainty. DAs: $\blacklozenge \Rightarrow$ Asymp., $\blacktriangle \Rightarrow ABOP-3$, $X \Leftrightarrow BMS$, $\blacksquare \Leftrightarrow CZ$ Lattice'10 estimate of a_2 are shown by vertical lines.

BMS bunch agrees well with the lattice data

BMS bunch has better agreement with data up 9 GeV^2 than with CLEO data only.

2D-Analysis of the data at $\mu_{SY} = 2.4$ GeV scale with accounting for $\Delta \delta_{tw4}^2$ uncertainty. DAs: $\blacklozenge \Leftrightarrow$ Asymp., $\blacktriangle \Leftrightarrow ABOP-3$, $X \Leftrightarrow BMS$, $\blacksquare \Leftrightarrow CZ$ Lattice'10 estimate of a_2 are shown by vertical lines.

BMS bunch agrees well with the lattice data

BMS bunch has better agreement with data up 9 GeV^2 than with CLEO data only.

BMPS [arXiv:1105.2753 [hep-ph]]: 2D 1σ -error ellipses at $\mu_{SY} = 2.4$ GeV scale with accounting for $\Delta \delta_{tw4}^2$ uncertainty. DAs: $\blacklozenge \Leftrightarrow$ Asymp., $\blacktriangle \Leftrightarrow ABOP$ -3, $X \Leftrightarrow BMS$, $\blacksquare \Leftrightarrow CZ$ Lattice'10 estimate of a_2 are shown by vertical lines.

Data Set $1 - 40 \text{ GeV}^2$ $\longrightarrow 2D 1\sigma$ -error ellipse $--- \Leftrightarrow 2D$ -Proj. 3D-ellipsoid

Bad agreement with 2D 1σ -error ellipse

No cross-section with $a_6 = 0$ plane.

3D Data Fit of Pion DA vs BMS (QCD SR)

= := BMS, = := 1 - 9 GeV², = := 1 - 40 GeV²

at $\mu_{SY} = 2.4 \text{ GeV}$ scale.

BMS bunch agrees well with Data Set $1 - 9 \text{ GeV}^2$;

3D Data Fit of Pion DA vs BMS (QCD SR)

= := BMS, = := 1 - 9 GeV², = := 1 - 40 GeV²

at $\mu_{SY} = 2.4 \text{ GeV}$ scale.

BMS bunch agrees well with Data Set 1 – 9 GeV²;
 New BaBar Data do not agree with BMS bunch based on NLC QCD SRs.

3D Data Fit of Pion DA vs BMS (QCD SR)

----= = BMS, $---== 1 - 9 \, \text{GeV}^2$, $---== 1 - 40 \, \text{GeV}^2$

at $\mu_{SY} = 2.4 \text{ GeV}$ scale.

- **BMS** bunch agrees well with Data Set $1 9 \text{ GeV}^2$;
- New BaBar Data do not agree with BMS bunch based on NLC QCD SRs.
- Both data sets does not match each other.

End-point Bechavior of Pion DA

Integral derivative $D^{(2)}\varphi(x) = \frac{1}{x}\int_0^x \frac{\varphi(y)}{y}dy$

is an average derivative $\varphi'_{\pi}(x)$ near the end-point x = 0.

Important property: $\lim_{x \to 0} D^{(2)} \varphi(x) = \varphi'_{\pi}(0).$

End-point Bechavior of Pion DA

Integral derivative $D^{(2)}\varphi(x) = \frac{1}{x}\int_0^x \frac{\varphi(y)}{y}dy$

at $\mu_{SY} = 2.4 \text{ GeV}$ scale.

D $A^{1-9 \text{ GeV}^2}$ and **D** $A^{1-40 \text{ GeV}^2}$ are separated near the origin.

BaBar Data demands End-Point Enhanced Pion DA.

Confidential Region for Pion DA Moments vs. Lattice QCD

QFTHEP'2011@Sochi (Russia)

 1σ region in $(\langle \xi^2 \rangle_{\pi}, \langle \xi^4 \rangle_{\pi})$ plane from $2D(1 - 9 \text{ GeV}^2)$ analysis vs QCDSF&UKQCD Lattice Data [PRD74(2006)074501] at $\mu_{\text{lat}} = 2 \text{ GeV}$ scale:

Our $2D-1\sigma$ region is almost completely inside Lattice'06 constraint.

1 σ region in $(\langle \xi^2 \rangle_{\pi}, \langle \xi^4 \rangle_{\pi})$ plane from 2D $(1 - 9 \text{ GeV}^2)$ analysis vs RBC&UKQCD Lattice Data [PRD83(2011)074505] at $\mu_{\text{lat}} = 2 \text{ GeV}$ scale:

Our 2D-1 σ region is one-half inside Lattice'10 constraint.

QFTHEP'2011@Sochi (Russia)

1 σ region in $(\langle \xi^2 \rangle_{\pi}, \langle \xi^4 \rangle_{\pi})$ plane from 2D $(1 - 9 \text{ GeV}^2)$ analysis vs RBC&UKQCD Lattice Data [PRD83(2011)074505] at $\mu_{\text{lat}} = 2 \text{ GeV}$ scale:

Our 2D-1 σ region with $(M^2 \approx 0.7 \,\text{GeV}^2)$ is one-half inside Lattice'10 constraint,

whereas the 2D-1 σ region with ABOP value ($M^2 = 1.5 \text{ GeV}^2$) is completely out of Lattice'10 constraint!

1 σ region in $(\langle \xi^2 \rangle_{\pi}, \langle \xi^4 \rangle_{\pi})$ plane from 2D $(1 - 9 \text{ GeV}^2)$ analysis vs RBC&UKQCD Lattice Data [PRD83(2011)074505] at $\mu_{\text{lat}} = 2 \text{ GeV}$ scale:

Intersection of Lattice and $2D-1\sigma$ region leads to prediction:

 $\langle \xi^4 \rangle_{\pi} \in [0.11, 0.122]$ — in a good agreement with estimation $\langle \xi^4 \rangle_{\pi} \in [0.095, 0.134]$ in [Stefanis, NPB.PS.181(2008)199].

Fit Results and Pion DA Models

QFTHEP'2011@Sochi (Russia)

Comparing Fit Results with Pion DA models

Model/Fit	Values of <i>a_n</i>	χ^2/ndf	$\chi^2/{\sf ndf}$
		$(1-9{ m GeV}^2)$	$(1-40{ m GeV}^2)$
a_2,a_4,a_6 Fit	(0.18, -0.17, 0.31)	0.4	1.0
BMS	(0.14, -0.09)	0.5	3.1
Agaev et al	(0.08, 0.14, 0.09)	2.8	2.4
Kroll	(0.21, 0.01)	3.8	4.4
AdS/QCD	0.15, 0.06, 0.03	2.3	2.8
CZ	(0.39)	32.3	25.5
Asympt.	(0,0)	4.7	7.9

All values given at $\mu_{SY} = 2.4$ GeV scale.

■ BMS DA gives best LCSR Description of $\pi\gamma$ TFF for $Q^2 \le 9$ GeV².

All-Data LCSR-Fit Result is far from All Considered Pion DA Models.

Comparing Different Data Set Analyses

Q ² regions	$[1-9]{ m GeV}^2$	$[1-40]{ m GeV}^2$
BMS bunch	Agreement	No!
η and η'	Agreement	No!
Number of harmonics n	2,3	3,4
Best χ^2_{ndf}	0.53, 0.44	1.0, 0.77
Derivative $arphi_{\pi}(x) _{x=0}$	$\textbf{20.2} \pm \textbf{19.8} \pm \textbf{1.1}$	$48.5\pm11.4\pm0.4$
Derivative $D^{(2)} \varphi_{\pi}(0.4)$	$6.6\pm1.1\pm0.4$	$8.1\pm0.7\pm0.3$

By fitting $\pi\gamma$ Transition FF Data in LCSR Approach we obtained Confidential Regions for Gegenbauer coefficients, Moments, and Derivatives of Pion DA.

- By fitting $\pi\gamma$ Transition FF Data in LCSR Approach we obtained Confidential Regions for Gegenbauer coefficients, Moments, and Derivatives of Pion DA.
- Result of fitting the CELLO, CLEO, and BaBar Data up to 9 GeV² is in a good agreement with previous CLEO-based fit and prefers the End-Point Suppressed (BMS) Pion DA.

- By fitting $\pi\gamma$ Transition FF Data in LCSR Approach we obtained Confidential Regions for Gegenbauer coefficients, Moments, and Derivatives of Pion DA.
- Result of fitting the CELLO, CLEO, and BaBar Data up to 9 GeV² is in a good agreement with previous CLEO-based fit and prefers the End-Point Suppressed (BMS) Pion DA.
- Taking into account all the data on $F_{\gamma^*\gamma \to \pi}(Q^2)$, including the new BaBar points with $Q^2 = 10 - 40 \text{ GeV}^2$, requires sizeable coefficient a_6 , while a_2 and a_4 remain the same. All-Data-Fit prefers End-Point Enhanced Pion DA.

- By fitting $\pi\gamma$ Transition FF Data in LCSR Approach we obtained Confidential Regions for Gegenbauer coefficients, Moments, and Derivatives of Pion DA.
- Result of fitting the CELLO, CLEO, and BaBar Data up to 9 GeV² is in a good agreement with previous CLEO-based fit and prefers the End-Point Suppressed (BMS) Pion DA.
- Taking into account all the data on $F_{\gamma^*\gamma \to \pi}(Q^2)$, including the new BaBar points with $Q^2 = 10 - 40 \text{ GeV}^2$, requires sizeable coefficient a_6 , while a_2 and a_4 remain the same. All-Data-Fit prefers End-Point Enhanced Pion DA.
- Evident conflict between ($\eta\gamma$ and $\eta'\gamma$) and $\pi^0\gamma$ BaBar Data may signal about strong isospin symmetry violation in pseudoscalar meson sector.

- By fitting $\pi\gamma$ Transition FF Data in LCSR Approach we obtained Confidential Regions for Gegenbauer coefficients, Moments, and Derivatives of Pion DA.
- Result of fitting the CELLO, CLEO, and BaBar Data up to 9 GeV² is in a good agreement with previous CLEO-based fit and prefers the End-Point Suppressed (BMS) Pion DA.
- Taking into account all the data on $F_{\gamma^*\gamma \to \pi}(Q^2)$, including the new BaBar points with $Q^2 = 10 - 40 \text{ GeV}^2$, requires sizeable coefficient a_6 , while a_2 and a_4 remain the same. All-Data-Fit prefers End-Point Enhanced Pion DA.
- Evident conflict between ($\eta\gamma$ and $\eta'\gamma$) and $\pi^0\gamma$ BaBar Data may signal about strong isospin symmetry violation in pseudoscalar meson sector.
- **D** To resolve BaBar puzzle we need Belle verification of $\pi\gamma$ Transition FF Data.

"Twist-6" contribution [Agaev et al, PRD83,0540020(2011)]

$$\rho^{(t=6)}(Q^2, x) = 8\pi C_F \alpha_s(\mu) \frac{\langle \bar{q} q \rangle^2}{N_c f_\pi^2} \frac{x^2}{Q^6} \left[2x \log x + 2x \log \bar{x} - x + 2\delta(\bar{x}) - \left[\frac{1}{1-x} \right]_+ \right].$$

$$\rho^{(t=6)}(Q^2, x) \sim 8\pi C_F \alpha_s(\mu) \frac{\langle \bar{q} q \rangle^2}{Q^6}$$

BaBar Doubts about BaBar data?

- BaBar Collaboration also measured FFs of $\gamma^* \gamma \rightarrow \eta$ and $\gamma^* \gamma \rightarrow \eta'$, see [Arxiv:1101.1142].
- From η and η' FFs they extracted hypothetical *n* FF using $\eta \eta'$ mixing in the quark flavor basis:

$$|n
angle = rac{1}{\sqrt{2}}(|\overline{u}u
angle + |\overline{d}d
angle), \qquad |s
angle = |\overline{s}s
angle,$$

 $|\eta
angle = \cos \phi \, |n
angle - \sin \phi \, |s
angle, \qquad |\eta'
angle = \sin \phi \, |n
angle + \cos \phi \, |s
angle,$

with $\phi = 39.9^{\circ} \pm 2.9^{\circ}$.

• Take into account flavor structure and quark charges $\Rightarrow e_u^2 + e_d^2 = \frac{5}{3} \cdot (e_u^2 - e_d^2) \Rightarrow \text{factor } \frac{5}{3}.$

Frontiers in Nuclear Physics @ Dubna, May. 16–19, 2011

BaBar Doubts about BaBar data?

■ BaBar Collaboration also measured FFs of $\gamma^* \gamma \rightarrow \eta$ and $\gamma^* \gamma \rightarrow \eta'$, see [Arxiv:1101.1142].

Frontiers in Nuclear Physics @ Dubna, May. 16–19, 2011

 $\gamma\gamma^*
ightarrow \pi$ FF and Pion DA – p. 19

A possible scenarios to explain the BaBar data A. Dorokhov [0905.3577] with constituent quark model $Q^2 F_{\gamma^*\gamma \to \pi}(Q^2) \sim \ln^2(Q^2/M_q^2)$ with $M_q \simeq 135$ MeV.

Note $M_q \simeq 135$ MeV < 300 MeV. No trace of QCD...

Frontiers in Nuclear Physics @ Dubna, May. 16–19, 2011

 $\gamma\gamma^*
ightarrow \pi$ FF and Pion DA – p. 20

A possible scenarios to explain the BaBar data

● A. Radyushkin [0906.0323] with "flat" DA $\varphi_{\pi}(x) \approx 1$ and using Light-Front Gaussian model:

$$Q^2 F_{\gamma^* \gamma o \pi}^{\mathsf{LFG}}(Q^2) \sim \int_0^1 rac{arphi_\pi(x)}{x} \left[1 - \exp\left(-rac{x \, Q^2}{2 \, ar x \, \sigma}
ight)
ight] dx$$

Here $\sigma \simeq 0.53 \; \mathrm{GeV}^2$.

Frontiers in Nuclear Physics @ Dubna, May. 16–19, 2011

 $\gamma\gamma^*
ightarrow \pi$ FF and Pion DA – p. 20

Frontiers in Nuclear Physics @ Dubna, May. 16–19, 2011

 $\gamma\gamma^*
ightarrow \pi$ FF and Pion DA – p. 20