Top Quark Physics at the Tevatron

QFTHEP 2010

L. Dudko SINP MSU, Moscow For the D0 and CDF collaborations

Why We Like Top Quark

•Top quark decays through ONE decay channel

 $t \to bW^+$, BR $(t \to other) \le \mathcal{O}(10^{-3})$

•The total and differential rates are calculated with $\mathbb{O}(10\%)$ accuracy

•Top quark is unique and powerful instrument to study SM physics and search for manifestation of New Physics beyond SM

Study of Top Quark

- total production cross section $(t\bar{t} \text{ pair and single top})$
- differential distributions, like $M(t\bar{t}), p_{\top}, ...,$ spin correlations
- $m_t, \Gamma_{tot}(t \to X), V_{tb}$
- the top production and decays due to new physics
- $gt\bar{t}$, $Wt\bar{b}$ vertexes, rare top decays

 \diamond New Physics (beyond SM) can manifest itself by different ways

- anomalous $gt\bar{t}$ couplings
- anomalous $Wt\bar{b}$ couplings
- Flavor Changing Neutral Current (FCNC)
- new bosons $(H^{\pm}, W', W_R, Z', \eta_T, \rho_T, ...)$
- extra dimensions, ...

Collider Run II Integrated Luminosity

- 1.96 TeV p-anti p collider
- 396 ns between bunches
- Has delivered 8.7 fb⁻¹ of data since 2001
- running smoothly, expect
 10 fb⁻¹ at the end of 2010

Production Processes

- $t \,\overline{t} \, b \,\overline{b}$
- $t \bar{t} H, t \bar{t} W^{\pm}, t \bar{t} Z$
- \bullet t-quark production due to new interactions

Top Pair Production (QCD)

				tŪ [p	-	Cacciari et al., arXiv:0804.2800
				Ħ	-	
				1	-	Kidonakis, Vogt, arXiv:0805.3844
	process	$\sigma_{t\bar{t}}$ [pb]		ы 10 С	Å .	Moch, Uwer, arXiv:0804.1476
Run I	$90\% \ q\bar{q} \to t\bar{t}$	$5.19^{+0.52}_{-0.68}$	Cacciari	- 0		
$p\bar{p}, 1.8$	$10\% \ gg \to t\bar{t}$	5.24 ± 0.31	Kidonakis	8		
Run II	$85\% \ q\bar{q} \rightarrow t\bar{t}$	$6.70^{+0.71}_{-0.88}$	Cacciari	-		
$p\bar{p}, 1.96$	$15\% \ gg \to t\bar{t}$	6.77 ± 0.42	Kidonakis		-	
LHC	$10\% \ q\bar{q} \to t\bar{t}$	833^{+52}_{-39}	Bonciani	- 0	-	
pp, 14	$90\% \ gg \to t\bar{t}$	873^{+2}_{-28}	Kidonakis		-	m _{top} world average
				4,		
				16	5	1/0 1/5 Top Mass [Col/

Top Pair Analysis Channels Top Pair Branching Fractions Dileptons "alljets" 44% Small rate, small backgrounds Main background: Drell-Yan τ+jets 15% Lepton + Jets Good rate and manageable backgrounds μ+jets 15% Main background: W+jets e+jets 15% "lepton+jets" All-hadronic (alljets) "dileptons" Large rate, large background Jet Main background: multijets **Displaced tracks Decay lifetime** Secondary vertex Lxy Identification of b-quarks through secondary vertex **Primary** vertex is a critical point to reduce backgrounds **Prompt tracks** 9

tt: Cross section measurements

Discriminant Output

 $\ell \ell$: $\sigma_{t\bar{t}} = 8.4 \pm 0.5 \text{ (stat)} {}^{+0.9}_{-0.8} \text{ (syst)} {}^{+0.7}_{-0.6} \text{ (lumi) pb.}$

tt: Cross section measurements

Tevatron combination is in progress 11

tt: Top Mass Measurement

D0 matrix element analysis in I+jets channel

CDF Neural Network analysis in I+jets chann.

Mass of the Top Quark

Top Mass → Indirect Constraints

tt: Direct measurements

 $R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2}$ D0 900 pb⁻¹ $R = 0.97^{+0.09}_{-0.08}$; R > 0.79 @95%CL CDF 162 pb⁻¹ $R = 1.12^{+0.21}_{-0.19}$ (stat) $^{+0.17}_{-0.13}$ (syst) R > 0.61 @95%CL

 $\Gamma_{t} = \Gamma_{t}^{0} (1 - \frac{M_{W}^{2}}{m_{t}^{2}})^{2} (1 + 2\frac{M_{W}^{2}}{m_{t}^{2}}) [1 - \frac{2\alpha_{s}}{3\pi} (\frac{2\pi^{2}}{3} - \frac{5}{2})] \qquad \Gamma_{t}^{SM} \approx 1.5 \text{ GeV}$ $CDF 4.3 \text{ fb}^{-1} \text{ Direct Fit } \Gamma_{t} < 7.5 \text{ GeV}; \ \tau_{t} > 8.7 \times 10^{-26} \text{ s} @ 95\% \text{ CL}; \ \Gamma_{t} = 1.9^{+1.9} \text{ -1.5} \text{ GeV}$ $D0 2.3 \text{ fb}^{-1} \text{ Indirect Fit } \Gamma_{t} = 2.1 \pm 0.6 \text{ GeV}; \ \tau_{t} < 5 \times 10^{-25} \text{ s} @ 95\% \text{ CL}$ $\Gamma_{t} = \frac{\sigma(t-\text{channel})}{\beta(t-Wb)} \frac{\Gamma(t-Wb)_{SM}}{\beta(t-Wb)}$

D0 1 fb⁻¹ direct top antitop mass difference: m

 m_{top} - $m_{antitop}$ = 3.8 ±3.7 GeV

Top charge:

CDF 2.7 fb⁻¹ measurement excludes top charge -4/3 with 95% CL D0 370 pb⁻¹ measurement excludes top charge -4/3 with 92% CL

Forward-Backward Asymmetry

$$\left(N_{\overline{t}}(y) = N_{t}(-y) \right)$$

 $A_{fb} = \frac{F - B}{F + B}$

Due to interference terms \overline{q} SM predicts at NLO (may be less at NLO+NLL): \overline{q}

 $A_{fb}^{ppbar} = 0.05 \pm 0.015$

$$A_{FB}^{ppbar}$$
= 0.15 ± 0.05 (stat) ± 0.024 (syst)5.3 fb⁻¹ A_{FB}^{ttbar} = 0.158 ± 0.072 (stat) ± 0.017 (syst)5.3 fb⁻¹

tt: 4th generation t' search

450 500 m_{fit} [GeV]

Top Single Production (EWK)

 \mathcal{W}

t-channel ($Q_W^2 < 0$) s-channel $(Q_W^2 > 0)$ associated tW ($Q_W^2 = M_W^2$)

Wt associated production

	$t/ar{t}$	$\sigma_S ~[{ m pb}]$	$\sigma_T~[{ m pb}]$	σ_{tW} [pb]	
Run I	$t,ar{t}$	$0.75^{\pm 0.10}_{-0.09}$	$1.46\substack{+0.20\\-0.16}$	—	$\operatorname{Sullivan}$
Run II	$t,ar{t}$	$0.88^{+0.12}_{-0.11}$	$1.98^{+0.28}_{-0.22}$		Sullivan
1.96 ТэВ		0.98 ± 0.04	2.16 ± 0.12	0.26 ± 0.06	$\operatorname{Kidonakis}$
	t	$6.56^{+0.69}_{-0.63}$	$155.9^{+7.5}_{-7.7}$		Sullivan
LHC	\overline{t}	$4.09^{+0.43}_{-0.39}$	$90.7^{+4.3}_{-4.5}$		
$14 \mathrm{T_{\Im B}}$	t	$7.2^{+0.6}_{-0.5}$	146 ± 5	41 ± 4	Kidonakis
	$ar{t}$	4.0 ± 0.2	89 ± 4	41 ± 4	

Single Top t(t) issues

- Independent electroweak channel of top quarks with Wtb vertex in production, not only in the decay of top
- Direct measurement of V_{tb} CKM element
- Unique spin correlations
- Significant background for the Higgs search
- Wide spectrum of «New Physics» to test
- XS is about 40% of tt rate but the background is significantly larger, therefore sophisticated analysis techniques have been developed
- Observed in 2009, 14 years after top quark discovery

t(t): D0 Analysis, Selection

Event Yields in 2.3 fb⁻¹ of DØ Data

e,µ, 2,3,4-jets, 1,2-tags combined				
tb + tqb	223 ± 30			
W+jets	2,647 ± 241			
Z+jets, dibosons	340 ± 61			
<i>t</i> t pairs	1,142 ± 168			
Multijets	300 ± 52			
Total prediction	4,652 ± 352			
Data	4,519			

W+Jets Cross-Check Sample

tt-Pairs Cross-Check Sample

t(t): D0 High Level Analysis

$t(\bar{t})$: CDF Combination of Six Analysis

LF, ME, NN, BDT, LFS discriminants are combined with Super Discriminant (SD) SD is neural network trained with neuro-evolution (about 13% improvement) Final results achieved by fit over two orthogonal discriminants SD and MJ

t(\bar{t}): Tevatron Combination (D0⊕CDF)

$t(\bar{t})$: t- and s-channels of single top production

$t(\bar{t})$: Direct measurement of V_{tb} $\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \qquad V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ $\Gamma^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} \left\{ \gamma^{\mu} \left[f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right] - \frac{i\sigma^{\mu\nu}}{M_{W}} \left(p_{t} - p_{b} \right)_{\nu} \left[f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right] \right\}$ $\begin{array}{c|c} \textbf{3} & & & & \\ \hline & & & \\ \hline$ **Tevatron Preliminary, August 2009** $f_1^L = 1, f_2^L = f_1^R = f_2^R = 0$ 95% C.L. limit: 0.79 $|V_{th}|^2 \gg |V_{td}|^2 + |V_{ts}|^2$ For σ_{s+t}^{theory} = 3.46 pb [PRD74 114012, 2006] 1.5 $|V_{tb}| = 0.88 \pm 0.07$ Measurement does not assume 95% C.L. limit: 0.77 **3** generations or unitarity 0.5 0.2 0.8 0.4 0.6

$t\bar{t}$ and $t(\bar{t})$: Anomalous Wtb

CDF single top polarization search

FCNC Search

Flavor Changing Neutral Currents (FCNC) $t \to qg$, $t \to q\gamma$, $t \to qZ$

FCNC processes lead to additional contribution to $t\bar{t}$ and $t(\bar{t})$ or exotic final states

t(t): FCNC Search in Single Top

$$g_s \frac{\kappa_{tug}}{\Lambda} \bar{u} \ \sigma^{\mu\nu} \frac{\lambda^a}{2} t \ G^a_{\mu\nu} + g_s \frac{\kappa_{tcg}}{\Lambda} \bar{c} \ \sigma^{\mu\nu} \frac{\lambda^a}{2} t \ G^a_{\mu\nu} + h.c.$$

CDF NN search @2.2 fb⁻¹

 $\sigma(u(c)+g \rightarrow t) < 1.8 \hspace{0.2cm} \text{@95\% CL}$

Converted to coupling limits:

 $\kappa_{tug}/\Lambda < 0.018 \text{ TeV}^{-1}$ assuming $\kappa_{tcg} = 0$ $\kappa_{tcg}/\Lambda < 0.069 \text{ TeV}^{-1}$ assuming $\kappa_{tug} = 0$

Or Branching limits:

$$\begin{split} \mathcal{B}(t \rightarrow u + g) &< 3.9 \times 10^{-4} \\ \mathcal{B}(t \rightarrow c + g) &< 5.7 \times 10^{-3} \end{split}$$

D0 NN analysis @2.3 fb⁻¹ $q\bar{q} \rightarrow t\bar{u}, ug \rightarrow tg, gg \rightarrow t\bar{u}$ $\kappa_{gtu}/\Lambda < 0.013 \text{ TeV}^{-1}$ $\kappa_{gtc}/\Lambda < 0.057 \text{ TeV}^{-1}$ $B(t \rightarrow gu) < 2.0 \times 10^{-4}$ $B(t \rightarrow gc) < 3.9 \times 10^{-3}$ $\sigma(gtu) < 0.20 \text{ pb}$ $\sigma(gtc) < 0.27 \text{ pb}$ at 95% CL

tt: FCNC in the decay of top

1.9 fb ⁻¹ CDF Indirect Search for invisible top decays					
Decay	$\mathcal{R}_{wx/ww}$ (%)	Upper Limit (%) (175 GeV)	Upper Limit (%) (172.5 GeV)	Upper Limit (%) (170 GeV)	•
$\mathcal{B}(t \to Zc)$	32	13	15	18	
$\mathcal{B}(t \to gc)$	27	12	14	17	
$\mathcal{B}(t \to \gamma c)$	18	11	12	15	
$\mathcal{B}(t \to \text{invisible})$	0	9	10	12	39

Search for ttH channel in D0 1fb⁻¹

 $t\bar{t}H \rightarrow t\bar{t}b\bar{b}$

Conclusion

- Tevatron demonstrates a good agreement with SM in top sector. There are no any evidence of deviation from SM in top physics.
- Tevatron is still the main place for top physics, many analysis are published and we expect more with the nearest future expected statistic of 10 fb⁻¹
- Details are available in the dedicated D0 and CDF publications (>150) and in the following links:

http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html http://www-cdf.fnal.gov/physics/new/top/public_mass.html