New definition of regularity for representation of canonical commutation relations algebras

Sergey G. Salinskiy with M. Mnatsakanova, Yu. Vernov Moscow State University

September, 2010

ション ふゆ アメリア メリア しょうくの

Table of content

- Introduction
- Analytical vectors

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Main theorem
- Conclusion

Canonical commutation relations

$$\begin{split} [\hat{p},\hat{q}] &= -i\,\hat{I}\\ L_2(-\infty,+\infty)\\ \hat{q}f(q) &= qf(q), \quad \hat{p}f(q) = -i\frac{\partial}{\partial q}f(q) \end{split}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

A definition of regularity

Rellich-Dixmier's theorem

Operators \hat{q} and \hat{p} form regular representation of CCR algebras if: 1. there exist dense domain $D \in D_q \bigcap D_p$ invariant under the action of \hat{q} and \hat{p} such that CCR hold on D; 2. Operator $(\hat{q}^2 + \hat{p}^2)$ is essentially self-adjoint on D.

Definition

Any representations of CCR algebras which are unitary equivalent to Schrodinger one are regular.

ション ふゆ くり くり くし くし

Weyl form

 $e^{it\hat{p}}e^{is\hat{q}} = e^{ist}e^{is\hat{q}}e^{it\hat{p}}$ $U(t) = e^{it\hat{p}}$ $V(s) = e^{i s \hat{q}}$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Analytical vectors

Definition

Let \hat{A} be a linear operator on a Hilbert space H. A vector $\xi \in H$ is called entire analytic for \hat{A} , if ξ is in the domain of \hat{A}^k for every $k \in \mathbb{N}$ and

$$\sum_{k=0}^{\infty} \frac{t^k}{k!} \|\hat{A}^k \xi\| < +\infty$$

for every t > 0.

ション ふゆ くり くり くし くし

Let's prove that a representation of CCR algebras is regular if there is a dense domain D in witch any vector $\xi \in D$ obeys conditions

$$\sum_{k=0}^{\infty}\frac{t^k}{k!}\|\hat{q}^k\xi\|<\infty,\quad\forall\,t>0;\quad\sum_{k=0}^{\infty}\frac{s^k}{k!}\|\hat{p}^k\xi\|<\infty,\quad\forall\,s>0$$

and also any regular representation obeys this conditions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If ξ is an entire analytic vector for \hat{A} then $exp(t\hat{A})\xi$ make sense for

every $t \in \mathbf{C}$ and it is an entire analytic function of t.

$$\hat{p} \, \hat{q}^n - \hat{q}^n \, \hat{p} = -i(\hat{q}^n)', \quad ('=d/dq) \hat{p} \, e^{is\hat{q}} - e^{it\hat{p}} \, \hat{p} = -i(e^{it\hat{q}})' e^{-it\hat{q}} \, \hat{p}^n \, e^{it\hat{q}} = (\hat{p} + t\hat{I})^n$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Main theorem: Stone's and von Neumann's theorems

Stone's theorem

Let \hat{A} be a shelf-adjoint operator on a Hilbert space H. Then $U(t) = e^{it\hat{A}}, t \in \mathbb{R}$ is a strongly continuous one-parameter family of unitary operators.

von Neumann's theorem

If on a Hillbert space H self-adjoint operators \hat{q} and \hat{p} are generators of the unitary groups $U(t) = e^{it\hat{p}}$ and $V(s) = e^{is\hat{q}}$, satisfying the Weyl relations, then \hat{q} and \hat{p} satisfy a regular representation of CCR.

ション ふゆ くり くり くし くし

Main theorem: part 2

$$\hat{q} = \frac{1}{\sqrt{2}}(\hat{a} + \hat{a}^*), \quad \hat{p} = \frac{1}{i\sqrt{2}}(\hat{a} - \hat{a}^*), \quad \hat{N} = \hat{a}^*\hat{a}$$

 $\psi = \sum_{m}^{m+n} C_k \psi_k, \quad \psi_n = (\hat{a}^*)^n \psi_0$

$$\sum_{k=0}^{\infty} \frac{t^k}{k!} \|\hat{q}^k\psi\| \le \le \sum_{k=0}^{\infty} \frac{t^k}{k!} C^k \left(2\left(m+n+1\right)!\right)^{k/2} < +\infty$$

Conclusion

- ► Krein spaces
- ▶ Weyl representation

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ