

# LHCb: status & news

Andrei Golutvin (Imperial College & ITEP & CERN) on behalf of the LHCb Collaboration

### Outline:

- > Physics Objectives
- > Validation of the detector performance with data
- Measurement of production cross-sections
- Goals and prospects for 2010-2011 LHC Run

(see also talk of Victor Egorychev: LHCb first results)

# The LHCb Experiment

□ Advantages of beauty physics at hadron colliders:

■ High value of bb cross section at LHC:

 $\sigma_{bb} \sim 300$  - 500  $\mu b$  at 7 - 14 TeV

(e+e- cross section at Y(4s) is 1 nb)

Access to all quasi-stable b-flavoured hadrons

□ The challenge

Multiplicity of tracks (~30 tracks per rapidity unit)

**Rate of background events:**  $\sigma_{inel} \sim 60 \text{ mb at } \sqrt{s} = 7 \text{ TeV}$ 

□ LHCb running conditions:

Luminosity limited to ~2×10<sup>32</sup> cm<sup>-2</sup> s<sup>-1</sup> by not focusing the beam as much as ATLAS and CMS (currently all experiments are at the same conditions)

> Maximize the probability of a single interaction per bunch crossing At LHC design luminosity pile-up of >20 pp interactions/bunch crossing while at LHCb ~ 0.4 pp interaction/bunch

LHCb will reach nominal luminosity already at the end of 2010
 2fb<sup>-1</sup> per nominal year (10<sup>7</sup>s), ~ 10<sup>12</sup> bb pairs produced per year





### LHCb Collaboration (day of the 1<sup>st</sup> collisions)



QFTHEP, Moscow 2010

### LHCb shift

(typical day of data taking: 2 main shifters + many experts on call)



# LHCb operation



## Main LHCb Physics Objectives

### Search for New Physics in CP violation and Rare Decays

#### CPV:

 $B_s$  oscillation phase  $\Phi_s$ CKM angle  $\gamma$  in trees and loops CPV asymmetries in charm decays

#### **Rare Decays**

Helicity structure in  $B \rightarrow K^* \mu \mu$  and  $B_s \rightarrow \phi \gamma$ ,  $\phi ee$ FCNC in loops ( $B_s \rightarrow \mu \mu$ ,  $D \rightarrow \mu \mu$ ) and trees

### Very non-SM ideas: Examples of FCNC in trees





Hadronic:  $B_{d,s} \rightarrow J/\psi \phi, \phi \phi$ 



# Key ingredients of physics performance

- Detector alignment
- Impact parameter (IP) & Vertex reconstruction
- Tracking efficiency
- Invariant mass resolution
- PID (hadron, muon, electron, photon)
- Trigger efficiency

# **VErtex LOcator (VELO)**

- Cluster finding efficiency 99.7%
- Module and sensor alignment known to better than 5 μm
- VELO is opened during injection ! Fill-to-fill variation of two halves relative alignment < 5µm</li>



#### Best VELO hit resolution is 4 μm Great achievement !!!





### Primary Vertex (PV) & Impact Parameter (IP) resolution

PV resolution evaluated in data using random splitting of the tracks in two halves and comparing vertices of equal multiplicity



Resolution for PV with 25 tracks

~ 15  $\mu$ m for X & Y and ~ 90  $\mu$ m for Z

worse than MC: 11  $\mu$ m for X & Y and 60  $\mu$ m for Z

# IP resolution ~20 $\mu$ m for the highest p<sub>t</sub> bins

Further improvement is expected with better alignment and material description





#### Magnet Silicon Trackers (IT/TT) and Outer Tracker (OT) Т3 T2 TT IT and TT alignment is TT 10000 ongoing LHCb —Data 8000 Preliminary MC 6000 TT: 4000 hit resolution 55 µm 2000 misalignment 35 µm IT: ΙΤ Residual (mm) hit resolution 54 µm 10000 LHCb —Data misalignment 16 μm 8000 F MC reliminary 6000 ΟΤ (scaled to unit integral) 4000 2010 data 2000 2010 mc 0.1 0.2 -0.2Residual (mm) LHCb $\sigma = 250 \ \mu m$ Preliminary Space drift-time relation corresponds to expectation from test beam data **OT well aligned:** resolution 250 µm close to nominal 0 -1

QFTHEP, Moscow 2010

residual [mm]

#### Signal peaks & present mass resolution



# **Tracking Efficiency**



### **Tracking efficiency systematics** $(D \rightarrow K\pi vs D \rightarrow K3\pi)$

**ε**(Track) **α**  $\sqrt{(N(K\pi\pi\pi)/N(K\pi) * BR(K\pi)/BR(K\pi\pi\pi))}$ 





QFTHEP, Moscow 2010

### **PID with RICH**





### Measurement of $\overline{p}/p$ ratio vs y and $p_t$

Use RICH to select high purity (>90%) samples of (anti)protons in bins of y and  $p_t$ Performance evaluated on PID-unbiased calibration samples:

Use samples to study baryon transport by measuring ratio of  $\bar{p}/p$  in kinematic bins



### **PID with Calorimeter**

#### (Identification of electrons and photons)



Reconstruction of D decays in the final states with neutrals looks encouraging !



ECAL is calibrated to 2% level  $\pi^0$  resolution is better than expected

Clear J/ $\psi$  signal is reconstructed in e<sup>+</sup>e<sup>-</sup> decay mode



### $\chi_c$ signal with LHCb calorimeter

 $\sigma$  fixed to 27 MeV (MC value)





### **PID** with MUON

 $\mu \neg \pi$ ,  $\mu \neg K$  and  $\mu \neg p$  misidentification rates have been determined using large samples of  $K_S \rightarrow \pi \pi$ ,  $\phi \rightarrow KK$  and  $\Lambda \rightarrow p\pi$  decays



# LHCb Trigger



#### Level-0

*'High-pt' signals in calorimeter & muon systems* 

#### HLT1

Associate L0 signals with tracks, especially those in VELO displaced from PV

#### HLT2

Full detector information available. Continue to look for inclusive signatures, augmented by exclusive selections in certain key channels.

At LHCb design luminosity ( $2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ ) all thresholds must be optimised for Bphysics, and consequently trigger efficiency for D decays from prompt-production is as low as ~ 10%. Still adequate for accumulating very large samples, but corresponding efficiencies for hadronic B-decays ~4x higher

## LHCb Trigger in 2010

For bulk of running foreseen this year, with luminosities up to a few 10<sup>30</sup> cm<sup>-2</sup> s<sup>-1</sup>, we can afford to relax many of our trigger cuts, with large benefits for efficiencies



Boost trigger efficiencies for hadronic decays of promptly produced D's by factor 3-4 w.r.t. nominal settings. Golden opportunity for charm physics studies ! Total efficiencies for hadronic B decays now ~70%, with those for leptonic decay modes >90%.

### **Trigger Efficiencies**

Take D\*,  $D^0 \rightarrow K\pi$  signal collected in minimum bias events & Evaluate L0\*HLT1 performance with 2010 low luminosity trigger settings

good agreement with MC

 $Eff-trig_{L0^*HLT1}(data) = 60 \pm 4 \%$ MC expectation = 66 %

Performance of single-hadron HLT1 line on data



## **Trigger Efficiencies**

□ Measure performance of L0\*HLT1 (using lifetime unbiased HLT1 lines) for  $J/\psi \rightarrow \mu\mu$ 

**Transport results to harder**  $p_t$  spectrum expected for  $B_s \rightarrow \mu \mu$ 



Data agree well with MCLHCb trigger concept has been proven with data !!!LHCb is currently running with the pile-up higher than expected at nominal conditionsQFTHEP, Moscow 201026

# *Measurement of production cross sections at* $\sqrt{s} = 7$ *TeV*

- Precision is dominated by systematic error on the luminosity measurement and tracking efficiency
- Used small sub-sample of collected data L ≤ 14 nb<sup>-1</sup> : ~ 2 nb<sup>-1</sup> with unbiased trigger and ~12 nb<sup>-1</sup> with low HLT thresholds
- Luminosity determined using Van der Meer scan and beam gas events (only possible at LHCb)

### Open charm cross-sections ( $D^*$ , $D^0$ , $D^+$ , $D_s$ ) @ $\sqrt{s} = 7 \text{ TeV}$



### $J/\psi$ cross-section @ $\sqrt{s} = 7$ TeV



For the cross section measurement use sub-sample of  $J/\psi \rightarrow \mu\mu$  (L~14nb<sup>-1</sup>) Fit results (2.5 < y < 4,  $p_T$  < 10 GeV/c):  $N_{signal} = 2872\pm73$  $M = 3088.3 \pm 0.4$  MeV/c<sup>2</sup>  $\sigma = 15.0 \pm 0.4$  MeV/c<sup>2</sup>

Fraction of J/ $\psi$  produced in b decays extracted from the fit to pseudo propertime,  $t_z$ :

 $f_b = 11.1 \pm 0.8\%$  (316 ± 24 events)

**Pseudo propertime:**  $t_z = d_z \times M(J/\psi) / p_z$ 



### **Prompt** $J/\psi$ and $b\bar{b}$ cross-sections @ $\sqrt{s} = 7$ TeV

σ(*inclusive J/ψ*,  $p_T$  < 10 GeV/c, 2.5 < y < 4) = 7.65 ± 0.19 ±1.10<sup>+0.87</sup><sub>-1.27</sub> μb, where the third error is due to unknown J/ψ polarization; will be measured in 2<sup>nd</sup> pass.

 $\sigma$ (J/ $\psi$  from b  $p_T$  < 10 GeV/c, 2.5 < y < 4) = 0.81 ± 0.06 ± 0.13  $\mu$ b



Extrapolation to the full angular acceptance using PYTHIA 6.4 and EvtGen:

 $\sigma(pp \rightarrow b\overline{b}X) = 319 \pm 24 \pm 59 \ \mu b$ 

### **bb** cross-section @ $\sqrt{s} = 7$ TeV using $B \rightarrow D^0 \mu X$ events



### $B \rightarrow D^0 X \mu v$ with $D^0 \rightarrow K \pi$

Correlate D<sup>0</sup> with the muon of the right (wrong) sign



### Same technique can be exploited to reconstruct $b \rightarrow D^+ / D_s / \Lambda_c X \mu^- v$ decays

Essential information for determination of b - fragmentation fractions



# Semileptonic b Yields @ 0.8 pb<sup>-1</sup>

Fit yields not efficiency corrected.

|    | Yields                | Dfb       | Prompt | Mass SB |
|----|-----------------------|-----------|--------|---------|
| D+ | RS                    | 3649±82   | 209±29 | 2059±24 |
|    | WS                    | 28.2±30   | 92±15  | 1371±18 |
|    | RS + nu reco          | 2774±62   | 0.0±4  | 826±15  |
| Ds | Inclusive RS          | 964±52    | 0±1    | 1468±19 |
|    | Inclusive WS          | 50±32     | 19±24  | 920±15  |
|    | Inclusive + nu reco   | 767±38    | 0±5    | 711±13  |
|    | phi+K*(892) (nu reco) | 562±26    | 0±3    | 111±5   |
| ٨c | RS                    | 1100 ± 38 | 14 ± 7 | 231 ± 8 |
|    | WS                    | 3 ± 10    | 0 ± 4  | 160 ± 6 |

### **bb** cross-section @ $\sqrt{s} = 7 \text{ TeV}$

#### For the cross section measurement use sub-sample of L ~ 14 nb<sup>-1</sup>

| η   | LHCb             |
|-----|------------------|
| 2-6 | 74.9±5.3±12.8 μb |
| all | 282±20±48 μb     |



Averaging between  $b \rightarrow J/\psi X$ and  $b \rightarrow D^0 X \mu v$  gives

 $\sigma(pp \rightarrow bbX) = 292 \pm 15 \pm 43 \ \mu b$ (assuming LEP frag. fractions)

Theory: MCFM 332 μb, NFMR 254 μb

# **Prospects for 2010-2011 Physics Run**

### **Electroweak physics at LHCb**

Unique  $\eta$  coverage of LHCb allows for very interesting W,Z production studies such as switch-over in W<sup>+</sup> / W<sup>-</sup> ratio in acceptance



### **Observation of first W bosons in LHCb**



### **Charm of beauty experiment**

 Excellent prospects for CPV studies; sensitivity < 0.1% is feasible at LHCb with first 100 pb<sup>-1</sup> !!! Expect several million tagged D<sup>0</sup> → KK ( BELLE 540 fb<sup>-1</sup> analysis uses ~10<sup>5</sup> tagged D<sup>0</sup>→KK giving stat. precision on y<sub>CP</sub>=0.32% and on A<sub>Γ</sub>=0.30% )



Again LHCb can be confident in collecting several million events in 100 pb<sup>-1</sup>, which is an order of magnitude increase on B-factories samples

• Similar opportunities in many other D physics topics, e.g. search for  $D^0 \rightarrow \mu\mu$  39

# Study of $B_{(s)} \rightarrow hh'$ ( $h' = \pi$ , K, p) at LHCb sensitive to CKM angle $\gamma$ via Penguin loops



Excellent mass resolution demonstrated. Yield so far agrees with expectations



With a few 100 pb<sup>-1</sup> the sample size will become largest in the world in both  $B^0$  and  $B_s$  decays

### Multibody hadronic final states in $B_{(s)} \rightarrow D_{(s)}K$ is the road to measure $\gamma$ in trees

First signals are observed at ~ expected rate  $\rightarrow$  Opportunity for better accuracy in  $\gamma$  with 2010-2011 data



# $B_s \rightarrow \mu\mu$

□ Super rare decay in SM with well predicted  $BR(B_s \rightarrow \mu\mu) = (3.2\pm0.2)\times10^{-9}$  $BR(B_d \rightarrow \mu\mu) = (1.1\pm0.1)\times10^{-10}$ 

- □ Sensitive to NP, in particular new scalars In MSSM: BR  $\propto \tan^6\beta / M_A^4$
- □ For the SM prediction LHCb expects 10 signal in 1 fb<sup>-1</sup>.

# Background expected from MC is so far in good agreement with data







### Exclusion of SM enhancement up to $BR(B_s \rightarrow \mu\mu) \sim 7 \times 10^{-9}$ should be possible with L~1 fb<sup>-1</sup>

Current limit can be improved with < 100 pb<sup>-1</sup>

# $B \rightarrow K^* \mu \mu$

Forward backward asymmetry, A<sub>FB</sub>, is extremely powerful observable for testing SM vs NP. Intriguing hint is emerging !!!



With 1 fb<sup>-1</sup> LHCb expects ~1400 events, and should clarify existing situation. Expected accuracy in A<sub>FB</sub> zero crossing point, cleanly predicted in SM, is ~0.8 GeV<sup>2</sup> in 1 fb<sup>-1</sup>



 $A_{FB}\left(s=m_{\mu^{+}\mu^{-}}^{2}\right)=\frac{N_{F}-N_{B}}{N_{F}+N_{B}}$ 

### CPV in $B_s \rightarrow J/\psi \phi$

 $\phi_s^{J/\psi\phi} = -2\beta_s$  is very small and precisely predicted in SM  $\rightarrow$  Very sensitive to NP !!!



### $B \rightarrow J/\psi K^+$ & proper time resolution

#### Unbinned likelihood fit of m and t distributions



Observed number of signal events consistent with MC expectations QFTHEP, Moscow 2010

45

### CPV in $B_s \rightarrow J/\psi \phi$

#### **Expected sensitivity:**

#### MC performance:

- -50k events / fb<sup>-1</sup> consistent with number of  $B_s \rightarrow J/\psi\phi$  candidates seen in data
- $-<\sigma_t> = 0.040 \text{ ps.}$  Present resolution worse in data but sufficient for  $\Delta m_s \sim 17.7/\text{ps}$ (will add 40% dilution to the sensitivity)
- Tagging performance εD<sup>2</sup> = 6.2%
  will be tested with more data



### **Conclusion & Outlook**

- First data are being used for calibration of the detector and trigger in particular
  - LHCb trigger concept has been proven with data
  - Charm resonances and B mesons have been reconstructed (even Z & W candidates)
  - First measurements of production cross-sections at  $\sqrt{s} = 7$  TeV for open charm, J/ $\psi$  and bb
- High class measurements in the charm sector may be possible with 50 pb<sup>-1</sup>
- □  $B_s \rightarrow \mu\mu$  and  $B_s \rightarrow J/\psi\phi$  will reach new sensitivity regime with ~ 100 pb<sup>-1</sup> Exciting prospects of discovery with full 1 fb<sup>-1</sup> sample
- Preparation for LHCb upgrade to collect data at 5-10 times higher luminosity is underway

# New physics in $a_{sl}^{s}$ (&/or $a_{sl}^{d}$ ) ?

If New Physics enhances CP-violation in  $B^0{}_S \rightarrow J/\psi \Phi$ , it will likely also dominate over the (negligible) SM CP-violation predicted in the like-sign lepton asymmetry.



CDF performed preliminary measurement with 1.6 fb<sup>-1</sup> which used IP significance  $A_{SL} = 0.0080 \pm 0.0090(stat) \pm 0.0068(syst)$  [CDF note 9015] LHCb proposes to measure  $a_{sl}^s - a_{sl}^d$ , by determining the difference in the asymmetry measured in  $B_s \rightarrow D_s(KK\pi)\mu\nu \& B^0 \rightarrow D^+(KK\pi)\mu\nu$  - same final state suppresses biases. Provides orthogonal constraint to D0 dileptons.



Events already being accumulated