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Abstract 
 Bogomolnyi multicomponent equations and a new exact solution - mixed vacuum solitons, 

describing in magnetic field the behavior of bosonic condensates )1()2( USU ⊗ -non-Abelian gauge 

theory are obtained. It is shown that in  -condensate of mixed charged vector (W ) and (D2 φ ) 

neutral scalar bosons the nontrivial effects of magnetic catalysis: phase separation at 1cHH=  and  

conversion of  topological charge at 2cHH=  take place. The points of degeneracy ( ) and 

conversion ( ) in condensed mixture depend on the masses of vector W -and Higgs -bosons.  
1cH

2cH φ

       

1.Introduction 

The first collisions have been observed at the Large Hadron Collider(LHC),which is 

now the world`s highest energy accelerator. Two of the central goals of the LHC are to 

find the  Higgs boson and to look for physics beyond the standard -Weinberg-

Salam theory. Very recently, many scenarios of Higgs boson with mass m

)1()2( USU ⊗

H>2mZ was 

considered[1,2]. Neverthelles, in the D-reduced supersymmetric theories (SUSY) it is also 

possible the Higgs boson with mass  mH<2mZ[1]. Recently a such model in (1+1)D was 

considered in context of ultracold boson-fermion mixture of the Bose-Einstein condensate 

(BEC)  in the laboratory  magnetic and optical traps [3]. In this connection increasing 

interest is caused by  the unusual phenomena and phase transitions induced by external 

magnetic field in  (non-) Abelian condensates, in particular, effects of magnetic catalysis 

in the nonlinear field models [4,5] and in gauge theories with spontaneously broken 

symmetry (SBS) [6-10].  
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In this context, the unified )1()2( USU ⊗ -Weinberg-Salam theory in an external 

magnetic field is of interest, where on the basis of constant solutions of the theory the 

features of  vacuum [7] and phase transition  are studied [6]. In the bosonic sector of 

Weinberg-Salam theory are also known topological solutions - sfaleronies and 

multisfaleronies [9,10] describing  transitions  of the type "vacuum-vacuum" and are of 

interest in the cosmological problem of baryon asymmetry in the Universe [10-12]. 

In the Grand unified theories (GUT)  , as well as in the electroweak )1()2( USU ⊗ - 

theory, the generation of masses of physical particles (fermions and bosons) occurs 

through the mechanism of spontaneous breaking of gauge symmetry [13,14]. Despite the 

"universality" in the nature of Higgs mechanism of the SBS, till now, remains opened a 

question about the mass of  Higgs particle, about  the topology of the vacuum states of 

unified theories, etc.  Theories, where in the role of Higgs elementary scalar the compound 

scalars are suggested [14]. Such examples are known in condensed  matter physics, in 

particular, in the Bardeen-Cooper-Schrieffer theory of superconductivity (SC), where the 

Cooper pair (boson) is a composite scalar (spin 0=s ), and  the mechanism of SC also 

serves as a Higgs phenomenon that occurs due to the interaction of electrons with phonons 

of the lattice. If there is an analogy with the SC and ferromagnetism (FM), then symmetry, 

which at low magnetic fields and temperatures ( TH , CC TH ,< ) has been spontaneously 

broken, should be restored at high H  and T  ( ).  In [7]  the -reduction of 

-Lagrangian is considered and for the first time, by the method of trial orbits 

[8],  some partial solutions (vacuum solitons) of field equations of the 2-nd order are 

found.  

cc TH ,> D2

)1()2( USU ⊗

In this paper, the behavior of bosonic Weinberg-Salam-Higgs condensates in a 

magnetic field is studied by the generalized method of Bogomolnyi [17] and instead of 

field equations of the 2-nd order equations of the 1-st order are obtained. It is shown that 

the equations are isomorphic on the class of solutions of mixed vector solitons [18], stable 

on Bogomolnyi bounder. Significant physical result of a new approach lies in the fact that 

in the -condensate of mixed charged vector ( ) and a neutral scalar (D2 ±W φ ) of bosons 

there are nontrivial effects induced by external magnetic field H :  separation of phases at 
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1cHH =  and  conversion of the topological charge of solitons at . Points of 

degeneracy   and conversion  in the condensate mixture depend on the masses of 

the -vector and -Higgs bosons. It is shown that the proposed method is regular and 

allows you to find stable soliton solutions in multicomponent systems at known 

superpotential of interacting nonlinear fields.  

2cHH =

1cH 2cH

W φ

 

2. ( -reduction )D11+ U(1)SU(2)⊗  theory in a magnetic field 

Bosonic sector of the electroweak )1()2( USU ⊗ -theory in  space-time is 

described by the action [9,12]  

( )D13+

                                       ( )∫ ⎭
⎬
⎫

⎩
⎨
⎧ ϕ−ϕ+−= VDGTrxdS 224

2
1 

4
1

.                                  (1)           

        Here ( ) (  2 2
0

2  ϕ−ϕλ=ϕV ) -potential of scalar fields 

                                                ,           AA GGggG νσµρ
ρσµν=2 ( ) ,3,2,1,0,0 =α=A  

                                     ( )µνµν
α
νµµν =∂∂= FAAG    - 00 ;       γ

ν
β
µ

αβγα
µν

α
νµ

α
µν ε+∂∂= VVVVG g -

where ( ϕ′+σ−ϕ∂=ϕ µ
α
µ

α
µµ  

2
1 0AgVgD )  - covariant derivative,  - Pauli matrices; ασ 0

µ
α
µ AV  and 

gg ′  is a -gauge field and coupling constant, respectively; )1()2( USU ⊗ eg W =θsin  - 

electric charge, -Weinberg angle; -Minkowski tensor with signature Wθ
µνg ( )1,,1,1,1 −−− . 

Gauge-equivalent minima of the potential ( )ϕV  with vacuum average ( )t1.00φ=ϕ  lead to 

the Higgs mechanism for the SBS: . In the unitary gauge, in the 

representation of physical fields 

)1()2( USU →

( ) 221
µµ

±
µ ±= iVVW , ( ) ( )( tt UAUZA 30 ,, µµµµµ θ= ) , when the 

external magnetic field , and a field of a neutral µµ = AAext 0Z  - boson , action (1) takes 

the form  

0=µZ

             ( ) ( )∫ ⎭
⎬
⎫

⎩
⎨
⎧ φ−φ∂φ∂+−+φ+−= µ

µ
µν

µνµν
µνµ∗

µ
µν∗

µν VddgdefWWmHHxdS  
2
1

4
1

2
1

2
1 224 .          (2)      

   Here  

                        ,    µννµµν −= WDWDH µµµ +∂= ieAD ,    µννµ ∂−∂= AAfµν , 
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                     ( )µ∗
νν

∗
µµν −= WWWWid  ,   ( ) ( )22

0
2 φ−φλ=φV ,   ( ) 2φ=φ gm ; 

where ( )ext
µµ = AA -vector potential of the external field, which we will then choose in a 

gauge ; W – -vector field, ( )0 ,  ,0 ,0 HxA −=µ ( )xµ ( )xφ - a scalar Higgs field; 0 , , φλg -constants 

determining in the theory of SBS mass   W - boson 20φ= gmW  and the Higgs particle 

02 φλ=Hm .  

We consider, that the field φ  is not dependent on the coordinates of x  and , and the 

components of the wave function of W -boson 

y

030 ==WW , 12 iWW = . It is easy to show that 

such a set of components  in the linearized theory corresponds to the ground state of W -

boson in a constant magnetic field 

µW

H . The wave function  meets the conditions  µW

                                                                                                                        (3) 0=µ
µWD

                                                ( )[ ] 0 1 =−∂+∂ WieHxi yx .                                                   (4) 

Equation (4) is equivalent to 01 =αW , where α -annihilation operator. Thus, solution (4) 

actually corresponds to the ground state of W -boson, and the spatial dependence of the 

wave function has the form ψ≡1W ,  

                      ( ) ( )( )[ ]2exp 2
223

141 eHpxeHyipzipLeH −−+π=ψ − ,                         (5) 

 where - normalization length. Solution (5) represents localized in coordinate L x  gauss 
with center in a point   eHpx 20 =    and  width of order ( ) 21−eH .  
 Taking  into account (3) and (4) averages 2

1W ,  4
1W  for the  yx  , -coordinates can be 

represented as [5,7]  

                         ( ) 22
1 ,~   ∫ ψµθ= ztWdxdy ,       ( ) 424

1 ,~  ∫ ψθµ= ztWdxdy ,                             (6) 

where eH 2=µ  and – the positive parameter whose value will be defined below.  θ

Averaging in the transverse to the magnetic field plane of coordinates yx , , we get 

-reduction  of action (2) for a mixture of electrically charged ( )D11+ ψ  and neutral φ  -

bosons in an external magnetic field H :  

                                ( ) ( )⎥⎦
⎤

⎢⎣
⎡ ψφ−φ′−φ+ψ′−ψ= ∫ ,

2
1  2222 UdzdtSM && ,                             (7)               
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                                 ( ) ( )22
0

2222412 2 22 φ−φλ+ψ−φ+ψθ= − eHggU . 

Here the dot/dot denotes differentiation with respect to zt , and ( ) 222 , ~ ztgeH ψθ=ψ − .  

Variational principle  leads to the Lorentz-invariant equations of motion 

(

0 =δ MS

2

2

2

2

2 zt ∂
∂

−
∂
∂

=� ):  

                                                 ( )[ ] 0 4 22
0

2
2 =φψ+φ−φλ+� g , 

                                              ( )[ ] 0 2 2122
2 =ψψθ+φ+−� − ggeH .                                       (8) 

It should be noted that the energy of a massive vector boson W  with a  charge (e ) in a 

constant homogeneous magnetic field, H  [19]  

( )[ ] 2122  212 zW pHenmE +σ−++=∗ 1 ,0 ,1, +−=σ , in the ground state ( )1  ,0 === σzpn  at  

emH W
2>  becomes purely imaginary and corresponds to an unstable mode of W -boson. It 

is in these circumstances a consistent nonperturbative approach (without the perturbation 

theory ) is required.  

Multicomponent system of nonlinear field equations (8), in general position, is not 

integrable and for arbitrary values of the parameters of the system the regular analytical 

method of the exact solution does not exist [18, 20]. The peculiarity of system (8) lies in 

the fact that along with a discrete P -symmetry ( )φ−=φ , it admits a global ( )1U -symmetry  

( ). Hereafter it will be shown that the invariance of the action (7) about 

discrete 

( αψ→ψ  exp i )

P - and charge - symmetries allows us to construct fields superpotential, 

which leads to Bogomolnyi equations, isomorphic system of nonlinear equations of the -

nd order (8).  

( )1U

2

 

3. -odd superpotentials and  Bogomolnyi equation  P

By virtue of Lorentz invariance the dynamic solutions of system (8) are associated 

with the static - coordinate transformation ( ) ( ) 2121 vvtzz −−→ , where -speed  of soliton 

( ). Since the static solutions of 

v

1=c ( )D11+ -system (8) with finite energy ( E ) are the 
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instantons of corresponding -Euclidean theory of field, we obtain the energy D1 ESE ≡ by 

analytic continuation in the Minkowski space-time ( )τ−→−=   itSiS ME . Besides we will 

consider, that due to global symmetry ( )1U :   there is a  current  and the 

corresponding invariant - electric charge 

ψ→ψ α ie 0=∂ µ
µ j

∫= dzjq 0  in the system, where 

( )µ∗
µ

∗
µ ψψ−ψψ= , , ij . Since the charge ( ) depends linearly on the , then the nontrivial 

solutions with finite energy and with 

q t,ψ

0≠q  should also be functions of time t . For the field 

configurations lying in the vicinity of { }ESE =min  it can be shown that ( )tiΩ−ψ exp~ . 

Certainly, that -rotation ( ) is "internal" and occurs in charging -space. Thus 

accounting of -symmetry of the system (8), along with Lorentz invariance allows to 

choose solutions and scale of fields in the form: 

( )1U Ω q

( )1U

( ) ( )zzt ~, 10φφ=φ , ( ) ( ) ( ) tiezzt Ω−φφ=ψ  
20  ~ 2, , 

where  and  - real-valued functions of the dimensionless variable 1φ 2φ ( ) 0
212~ φλ= zz . 

Euclidean action for a mixture of neutral ( 1φ ) and charged ( 2φ ) bosons in a magnetic field 

(H ) takes the form (further the tilde sign is omitted):  

                                   ( ) (
⎭
⎬
⎫

⎩
⎨
⎧

φφ+φ= ∑∫
∞

∞−
21eff

2
, ,

2
1

j
zjWE UdzCS ) ,                                     (9a)        

                                ∑ ∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+φφα⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+δ+φ−=

≠j
kjjk

jk
jkjjcU 12

2
1 222

eff .                             (9b)  

Here  

   W
WH

W e
mmC θ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ

= sin 
2

2

,   ( )22
21    ,1 Ω+== − eHmcc H  

                                    , 12
1

2221
22

1211      ,     ,1 αθ=αα==α=α −−
WH mm

where - frequency   is associated  with the charge )1(U Ω ∫= dzjq 0  by ratio: 

                                          ( ) ( )∫ φλθ=Ω− zdzemq WW
2
2

1 sin .                                                 (10)  

From (9) we obtain a system of coupled quasi-static nonlinear equations of the -nd order 

[20]:  

2

                                   ;     0  2 2
, =φ⎟

⎠

⎞
⎜
⎝

⎛
φα−+φ ∑ j

k
kjkjzzj c 2 ,1, =kj .                                 (11) 
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It should be noted that the quasi-static nature of the system (11) is due to the charge 

degrees of freedom of the initial model (7), whose contribution to the kinetic energy of 

2~ Ω  leads to deformation of potential ( )zUU 2
2

2
eff 2

1
φΩ−= . The field equations arising from 

(8) with zz−∂→�2  and at the actual field ( )zt,ψ  (i.e. in the absence of  - symmetry) are 

static and equivalent to system (11) with 

( )1U

0=Ω .  

For arbitrary values of the parameters  and  system (11), as well as system (8), 

does not allow exact integration [18]. However, analysis of the problem of extremal of the 

deformed potential  shows that in the points of 

jc jkα

( 21eff ,φφU ) a local minimum:  

                                          ( ) ( )1
222

2
1

1
1 ,0, −α=φφ cA aa , with ;  221 Ω−θ> −

HmeH

                       , with .  ( ) ( ) ( )21222212
1

22
2
12

2
2

2
1  ,, ccB bb −αα−αα−α=φφ

− 22 Ω−> WmeH

potential accepts the values:  

                                             ( ) ( )[ ]2
2eff 1

2
1 ,0 c

A HHU −=φ± α ,                                              (12) 

                     ( ) ( )[ ] ( )2221 122
21eff  4  , WcHWbb

B meHmmU −Ω+θ−θ=φ±φ±
−− .                                   (13) 

 As it can be seen in the neighborhood of points  and A B , interaction of fields 1φ  and 2φ  

(order parameters) in the presence of an external magnetic field H  has variable character  

(attraction repulsion) with ↔ H >
<  cH  and θ >

< cθ , where ( ) 1221  −− Ω−θ= emmH HWc
,  

. Further, it will be shown that with 22 −=θ HWc mm 1≠θ⋅θ c  such class of solutions does exist if 

a constant of interaction of fields 1φ and 2φ  has the form mcc ε+=α 2112 , where values 

 strictly depend on the conditions of spontaneous  violations of ( 2 ,1=ε mm ) P - symmetry  of 

phases: ,   ..  jj φ−=φ 2 ,1=j

We introduce P  - odd superpotential  

                                        ( ) ( )∑
=

− −φβ+φαφ=φφ
1

2
2

2
1

12
21 1,

k

k
m

k
m

k
m

mP ,                                          (15) 

with the obvious property of ( ) ( )mj
m

mj
m PP φφ−=φ−φ ,,  and  represent the Euclidean action 

(9) in the form  
                                                  ,                                                                   (16) B

E
P
EE SSS +=
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                          ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

−+±φ= ∑∫ φφ

∞

∞− j j

mmm
zjW

P
E jj

PUPdzCS 2
eff

2
, ,2,

2
1 ∑ ,                                     (17) 

                                         ,     m

j
zjW

B
E j

PdzCS φ

∞

∞−
∑∫ φ= ,, 2 ,1=j .                                              (18) 

  It follows that the Euclidean action (16) satisfies the inequality 

                                                            ,                                                                 (19)         B
EE SS ≥

   if the effective potential (9) admits the representation  

                                              ( ) ( ) ( )221eff ,
2
1∑ φ=φφ

j

mm
j

PU .                                                         (20) 

Obviously, in these conditions the Bogomolnyi boundary  

                                          ( ) { }EPCS m
W

B
E min, 21 ≡φφ±=

∞

∞−
                                            (21)         

is achieved on the field configurations ( )zjφ , satisfying the system of the differential 

equations of the 1-st order:  

                                       ( )21 , ,, φφ±=φ φ
m

zj j
P ,     2 ,1=j .                                               (22) 

Since - is a polynom( )mU eff ial not higher than the fourth order of 1φ  and , then in (15) it is 

sufficient  to limit to members  of  

2φ

1=k . In the representation (16-20) it is remarkable that 

the equation  of the connection (20) allows to determine not only the parameters of mα and 

 of superpotential (15), but at the same time, to obtain get strict ratios between the 

coefficients of  and 

mβ

jc jkα , found above on the physical level.  

From (16), (20) taking into account  (15) we find that  the following P  - odd 

superpotentials are admissible:  

                                      ( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

=φ−φ+φφ

=φ−φφ+φ
=φφ

 2      
3
1

1      ,
3
1

,
2

3
222

2
11

1
2
212

3
11

21

m,cc

mcc
Pm .                                       (23)  

 
It is easy to see from (23) and (20) that the violation of P - symmetry in the phases 

 and  takes place at values of  and , respectively. 

Consequently, the system of Bogomolnyi equations (22) with 

( 11 =φ m ) )( 22 =φ m 2
21 2c=ε 2

12 2c=ε

P -odd superpotential (23), 

for the found above relationships of the parameters ,jc   jkα ,    is isomorphic to the system 
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of quasi-static nonlinear equations of the -nd order (11) on the class of exact solutions 

with finite action.  

2

 

5.Conversion of solitons and magnetic separation of phases in the condensate 

mixture of charged vector and neutral Higgs bosons. 

 

Define the possible manifestation of  non-trivial effects in system (9) as a change of 

the character of exact solutions of Bogomolnyi equations at some critical value cjHH = . It 

is easy to notice that the effect of the ( )1U -charge  Ω~q  presence already manifests itself 

in the system at the level of constant (vacuum) solutions (12-13). It consists, of the fact 

that the phase transition  occurs in the field of cHH = , certainly less  ( eHH c
2Ω−= ∗ ), than in 

the absence of charge  degrees of freedom ( θ=∗ emmH HWc [6,7]). Effects of such kind of  

"catalysis" in the nonperturbative sector of solitons are non-trivial and their non-linear 

character essentially depends on the coupling constant  of fields 1φ  and .  2φ

In the space of controlling parameters { , eH 2Ω , , , 2
Wm

2
Hm θ }  we will assume mass of 

 - boson ( ) and -frequency W Wm ( )1U Ω  to be fixed, and the free parameter θ  we will 

define as the function of ( )cθθθ = , where 22
HWc mm=θ . The behavior of the condensate 

mixture of neutral  - and charged 1φ 2φ - bosons now depends on the value of magnetic field 

H  and the condition on θ .  

P - odd superpotential (23) with 1=m  corresponds to the case of constant cross-

modulation  of fields 2
22112 2ccc +⋅=α 1φ  and 2φ . The condition on θ  takes the form 

, where ( 1112
−∗− θθ−=θ c ) ( ) 1814 21 −θ+=θ∗ c , and the critical value of magnetic field equals 

( ) ( )[ ]22
0  2 HHc mmH Ω−θ= ∗ .  Configuration of fields 1φ  and 2φ :  

                                         ( ) ( )( )[ ]0
2221

1 2th zzeHmz H −Ω+=φ −
, 

                          ( ) ( )( ) ( )( )[ ]0
2221

21
212

2 2sech2 zzeHmmeHz HH −Ω+−Ω+=φ −−
,     (24)             
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is an exact solution of system of Bogomolnyi equations (22). The constant of integration 

- is an arbitrary point in space, determining  the center of the soliton. In the condensate 

mixture (24)  is a phase of broken 

0Z

1φ P -symmetry with topological charge  

                                         ,                                        (25)               ( ) ( ) ( ) ( )[∫
∞

∞−

∞−φ−∞φ== 11
0
11  JdzQ ]

where the   density of the topological current is  

                                                  ,    .                                                    (26) ( ) 11 φ∂ε= ν
µνµJ ( ) 01 =∂ µ

µ J

From (21) it follows, that the energy of the system (9) on the configuration of fields 

(24) is proportional to the topological charge  and is equal to  ( )1Q ( ) ( ) WW CQCE
3
4

3
2

11 == . At 

the same time from (24) and (10) it is clear that the phase of 2φ  with  - charge:  ( )1U

                                ( )[ ]
( )22

22 222
Ω+

Ω+−Ω
=

eHm
eHmCq

H

HW                                                           (27) 

disappears at values of the magnetic field ( ) ( )( )222 5,0 HH memH Ω−⋅≤ .  

In the case of superpotential (23) with 2=m  the constant of interaction of fields 1φ and 

 is . The condition on 2φ
2
22112 2ccc +⋅=α θ  has the form ( ) cc θ−θ=θ −22 . The critical value of 

the magnetic field is ( ) ( )[ ]22 222
2 −Ω−⋅= HcHc mmH θ . Exact solutions of the system of 

Bogomolnyi equations (22) now correspond to the new configuration of fields:  

                             ( ) ( )( ) ( ) ( )[ ],2sech21 0
2122

21122
1 zzeHmeHmz HH −Ω+Ω+−=φ

−−
  

                             ( ) ( ) ( ) ( )[ ]0
2122212

2 2th zzeHmmeHz HH −Ω+Ω+=φ
−−

.                     (28)                

From (24) and (28) it is clear that the magnetic field value  is critical. At the 

point  the topological and charging phases change "roles": . This nontrivial 

effect of "conversion" of solitons can be interpreted differently - as the transformation "of 

the electric charge into topological" and vice versa. Since the energy difference in the 

solutions (24) and (28) is equal to 

2cHH =

2cHH = 21 φ↔φ

( ) ( ) ( )( )HW meHCEEE 212
21 1

3
4 −

Ω+−=−=∆ , then with 

( )( )222 1 HH memH Ω−<  the configuration of fields (24) is energetically more favourable in 
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the system (9). Actually, steady solutions (28) exist in the region of more stronger 

magnetic fields, ( )( )222 1 HH memH Ω−> , than the solutions (24).  

Let’s consider the behavior of the phases 1φ  and 2φ  in the special case when the 

parameters of P - odd-potential (23) are equal to 121 == cc .  The constant  of interaction of 

the fields  and  accepts the value 1φ 2φ 312 =α . The condition on the  is  and critical 

value of the magnetic field is 

θ cθ=θ

( )221
1 Ω−= −

Hc meH . In the plane of the coordinate of  fields  

  at  potentials (23) and (9) appear to be degenerated:  21 φ±φ=φ± 121 == cc

                              ( ) ( −+−+ ±=φφ PPP
2
1,2,1 ),            ( ) ⎥⎦

⎤
⎢⎣
⎡ −φφ= ±±± 1
3
1 2P ;                           (29) 

                                ( ) −+−+ +=φφ effeffeff , UUU ,         ( )[ ]22
eff 1

4
1

−φ= ±±U ,                                 (30) 

and describe two independent phases of  and . A consequence of the degeneracy of 

the condensate mixture is that Bogomolnyi equations (22) factorize and take the form  

+φ −φ

                                                      ( )21, ±± φ−=φ z ,                                                        (31) 

and the system of coupled nonlinear equations of the -nd order (11) splits into two 

independent subsystems (nonlinear Schrodinger equations [20])  

2

                                                ( )[ ] 0 1 2, 2
=φφ−+φ ±±±

zz .                                                 (32) 

By direct substitution of (31) to (32) we can verify the equivalence of them. Hopf-

Cole transformation  is linearizing for nonlinear equations of the first order 

(31), where function  is the solution of linear equations . Hence it follows 

that the configuration of fields 

( )[ zz fln∂=φ± ]

( ) zzf ch= ff zz =,

                                               ( ) ( )[ ]2th ~
0

~~ zzmz H −±=φ± ,                                    (33) 

is the exact solution (topological solitons) of nonlinear Bogomolnyi equations (31) and at 

the same time, "dark" soliton of stationary nonlinear Schrödinger equations (32).  
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                                                               6. Conclusion 

  1). The multi- component Bogomolnyi equations (22) on the class of exact solutions 

of mixed solitons (24), (28) are isomorphic to the system of quasi-static nonlinear 

Schrödinger equations (11) and the reverse does not always take place. 

 2). The solution (33) describes the state of phase separation arising in the condensate 

mixture of charged and neutral bosons at 1cHH = . Phase separation in condensate mixture 

(7) can be defined as a state of coexistence of two independent symmetric topological 

phases ±φ=φ=φ 2121  of broken P -symmetry.  

  3). The found in [18] nontrivial class of exact solutions of vector solitons of 

integrable compact ( )mU  - nonlinear Schrödinger model possesses the same switching-

effects, as mixed solitons (24) and (28) of Bogomolnyi equations (22). The difference  is 

that in the first case they are true solitons and  switching effects are due to their dynamic-

topological nature, in the latter - they are "solitary waves" and the effect of conversion 

21 φφ ↔ (charge vector bosonic |Soliton> ⇔  neutral Higgs bosonic |Soliton>) is induced by 

an external  superstrong magnetic field. 
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