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To specify different types of cosmic fluids one uses a relation
between the pressure p and the energy density ϱ

p = wϱ, p = Ek − V, ϱ = Ek + V

where w is the state parameter.
The spatially flat Friedmann–Robertson–Walker metric:

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)
, (1)

where a(t) is the scale factor, the Hubble parameter H ≡ ȧ/a.

w(t) = − 1− 2

3

Ḣ

H2
= − 1 +

2Ek

ϱ
. (2)

Contemporary experiments give strong support that
w > 0 — Atoms. (4%)
w = 0 — the Cold Dark Matter. (23%)
w < 0 — the Dark Energy. (73%)

wDE = −1± 0.2. (3)

We consider the case wDE < −1. Null energy condition (NEC)
is violated and there are problems of instability.
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The SFT inspired nonlocal cosmological models

From the Witten action of bosonic cubic string field theory,
considering only tachyon scalar field ϕ(x) one obtains:

S =
1

g2o

∫
d26x

[
α′

2
ϕ(x)�ϕ(x) + 1

2
ϕ2(x)− 1

3
γ3Φ3(x)− Λ̃

]
, (4)

where

Φ = ek�ϕ, k = α′ ln(γ), γ =
4

3
√
3
. (5)

go is the open string coupling constant, α′ is the string length
squared and Λ̃ = 1

6γ
−6 is added to the potential to set the local

minimum of the potential to zero. The action (4) leads to
equation of motion

(α′� + 1)e−2k�Φ = γ3Φ2. (6)
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In the majority of the SFT inspired nonlocal gravitation mod-
els the action is introduced by hand as a sum of the SFT action
of tachyon field and gravity part of the action:

S =
1

g2o

∫
d4x

√
−g
(
M 2

P

2
R +

1

2
ϕ�gϕ +

1

2
ϕ2 − 1

3
γ3Φ3 − Λ

)
, (7)

Action (7) includes a nonlocal potential. Using a suitable
redefinition of the fields, one can made the potential local, at
that the kinetic term becomes nonlocal.
This nonstandard kinetic term leads to a nonlocal field be-

havior similar to the behavior of a phantom field, and it can
be approximated with a phantom kinetic term.
The behavior of an open string tachyon can be effectively

simulated by a scalar field with a phantom kinetic term.
Another type of the SFT inspired models includes nonlocal

modification of gravity.
Recently G. Calcagni and G. Nardelli have considered non-

local gravity with nonlocal scalar field (arXiv: 1004.5144).
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Nonlocal action in the general form

We consider a general class of gravitational models with a non-
local scalar field, which are described by the following action:

S =

∫
d4x

√
−gα′

(
R

16πGN
+

1

g2o

(
1

2
ϕF(�g)ϕ− V (ϕ)

)
− Λ

)
, (8)

GN is the Newtonian constant: 8πGN = 1/M 2
P ,

MP is the Planck mass.
We use the signature (−,+,+,+),
gµν is the metric tensor,
R is the scalar curvature,
Λ is the cosmological constant.
Hereafter the d’Alembertian �g is applied to scalar functions

and can be written as follows

�g =
1√
−g

∂µ
√
−ggµν∂ν . (9)
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The function F(�g) is assumed to be an analytic function:

F(�g) =

∞∑
n=0

fn� n
g . (10)

Note that the term ϕF(�g)ϕ include not only terms with
derivatives, but also f0ϕ

2.
In an arbitrary metric the energy-momentum tensor

Tµν = − 2√
−g

δS

δgµν
=

1

g2o

(
Eµν + Eνµ − gµν (g

ρσEρσ +W )
)
, (11)

Eµν ≡
1

2

∞∑
n=1

fn

n−1∑
l=0

∂µ�l
gϕ∂ν�n−1−l

g ϕ, (12)

W ≡ 1

2

∞∑
n=2

fn

n−1∑
l=1

�l
gϕ�n−l

g ϕ− f0
2
ϕ2 + V (ϕ). (13)
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From action (8) we obtain the following equations

Gµν = 8πGN (Tµν − Λgµν) , (14)

F(�g)ϕ =
dV

dϕ
, (15)

where Gµν is the Einstein tensor.
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From action (8) we obtain the following equations

Gµν = 8πGN (Tµν − Λgµν) , (16)

F(�g)ϕ =
dV

dϕ
, (17)

where Gµν is the Einstein tensor.

It is a system of nonlocal nonlinear equations !!!

HOW CAN WE FIND A SOLUTION?
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The Ostrogradski representation.

• M. Ostrogradski, Mémoire sur les équations differentielles
relatives aux problèmes des isoperimétres, Mem. St. Pe-
tersbourg VI Series, V. 4 (1850) 385–517

• A. Pais and G.E. Uhlenbeck, On Field Theories with Non-
localized Action, Phys. Rev. 79 (1950) 145–165

F(�) = F1(�) ≡
N∏
j=1

(
1 +

�
ω2
j

)
, (18)

all roots, which are equal to −ω2
j , are simple.

We want to get for

LF = ϕF1(�)ϕ. (19)

the Ostragradski representation: find such numbers cj, that

LF
∼= Ll =

N∑
j=1

cjϕj(� + ω2
j )ϕj. (20)
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We define

ϕj =

N∏
k=1,k ̸=j

(
1 +

1

ω2
k

�
)
ϕ, ⇒

(
� + ω2

j

)
ϕj = 0. (21)

Substituting ϕj in Ll, we get

Ll = ϕF2
1 (�)

(
N∑
k=1

ckω
4
k

ω2
k +�

)
ϕ. (22)

Ll = LF ⇔
N∑
k=1

ckω
4
k

ω2
k +� =

1

F1(�)
. (23)

All roots of F1(�) are simple, hence, we can perform a partial
fraction decomposition of 1/F1(�).

ck =
F ′

1(−ω2
k)

ω4
k

, where F1(−ω2
k)

′ ≡ dF1

d� |�=−ω2k
. (24)

Let F1(�) has two real simple roots. F ′
1 > 0 in one and only one

root. We get model with one phantom and one standard field.
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The Ostrogradski representation and an algorithm
of localization in the case of gravitational models
with an arbitrary quadratic potential
Generalization:

• Gravitation

• F(�) is an analytic functions

• F(�) has both simple and double roots.

• The potential V (ϕ) = C2ϕ
2 + C1ϕ + C0.

Veff =

(
C2 −

f0
2

)
ϕ2 + C1ϕ + C0 + Λ. (25)

We can change values of f0 and Λ such that the potential
takes the form V (ϕ) = C1ϕ. So, we put C2 = 0 and C0 = 0.
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Let us start with the case C1 = 0 and the equation

F(�g)ϕ = 0. (26)

We seek a particular solution of (26) in the following form

ϕ0 =

N1∑
i=1

ϕi +

N2∑
k=1

ϕ̃k. (27)

(�g − Ji)ϕi = 0, (�− J̃k)
2ϕ̃k = 0 (28)

Ji are simple roots of the characteristic equation F(J) = 0.
J̃k are double roots.
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Energy–momentum tensor for special solutions

If we have one simple root ϕ1 such that �gϕ1 = J1ϕ1, then

Eµν(ϕ1) =
1

2

∞∑
n=1

fn

n−1∑
l=0

Jn−1
1 ∂µϕ1∂νϕ1 =

F ′(J1)

2
∂µϕ1∂νϕ1.

W (ϕ1) =
1

2

∞∑
n=1

fn

n−1∑
l=0

Jn1 ϕ
2
1 =

J1
2

∞∑
n=1

fnnJ
n−1
1 ϕ21 =

J1F ′(J1)

2
ϕ21.

In the case of two simple roots ϕ1 and ϕ2 we have

Eµν(ϕ1 + ϕ2) = Eµν(ϕ1) + Eµν(ϕ2) + Ecr
µν(ϕ1, ϕ2), (29)

where the cross term

Ecr
µν(ϕ1, ϕ2) = A1∂µϕ1∂νϕ2 + A2∂µϕ2∂νϕ1. (30)

A1 =
1

2

∞∑
n=1

fnJ
n−1
1

n−1∑
l=0

(
J2
J1

)l
=

F(J1)−F(J2)

2(J1 − J2)
= 0, (31)

A2 = 0. (32)
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So, the cross term Ecr
µν(ϕ1, ϕ2) = 0 and

Eµν(ϕ1 + ϕ2) = Eµν(ϕ1) + Eµν(ϕ2) (33)

Similar calculations shows

W (ϕ1 + ϕ2) = W (ϕ1) +W (ϕ2). (34)

In the case of N simple roots the following formula has been
obtained:

Tµν =
N∑
k=1

F ′(Jk)

(
∂µϕk∂νϕk −

1

2
gµν
(
gρσ∂ρϕk∂σϕk + Jkϕ

2
k

))
. (35)

Note that the last formula is exactly the energy-momentum
tensor of many free massive scalar fields. If F(J) has simple
real roots, then positive and negative values of F ′(Ji) alternate,
so we can obtain phantom fields.
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Let J̃1 is a double root. The fourth order differential equation
(� − J̃1)

2ϕ̃1 = 0 is equivalent to the following system of equa-
tions:

(�− J̃1)ϕ̃1 = φ1, (�− J̃1)φ1 = 0. (36)

It is convenient to write �lϕ̃1 in terms of the ϕ̃1 and φ1:

�lϕ̃1 = J̃ l1ϕ̃1 + lJ̃ l−1
1 φ1. (37)

For one double root we obtain the following result:

Eµν(ϕ̃1) =
F ′′(J̃1)

4

(
∂µϕ̃1∂νφ1 + ∂µϕ1∂νφ̃1

)
+
F ′′′(J̃1)

12
∂µφ1∂νφ1.

Similar calculations gives

W (ϕ̃1) =
J̃1F ′′(J̃1)

2
ϕ̃1φ1 +

(
J̃1F ′′′(J̃1)

12
+
F ′′(J̃1)

4

)
φ2
1.
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For any analytical function F(J), which has simple roots Ji
and double roots J̃k, the energy–momentum tensor

Tµν (ϕ0) = Tµν

(
N1∑
i=1

ϕi +

N2∑
k=1

ϕ̃k

)
=

N1∑
i=1

Tµν(ϕi) +

N2∑
k=1

Tµν(ϕ̃k), (38)

where

Tµν =
1

g2o

(
Eµν + Eνµ − gµν (g

ρσEρσ +W )
)
, (39)

Eµν(ϕi) =
F ′(Ji)

2
∂µϕi∂νϕi, W (ϕi) =

JiF ′(Ji)

2
ϕ2i , F ′ ≡ dF

dJ
(40)

Eµν(ϕ̃k) =
F ′′(J̃k)

4

(
∂µϕ̃k∂νφk + ∂νϕ̃k∂µφk

)
+
F ′′′(J̃k)

12
∂µφk∂νφk, (41)

W (ϕ̃k) =
J̃kF ′′(J̃k)

2
ϕ̃kφk +

(
J̃kF ′′′(J̃k)

12
+
F ′′(J̃k)

4

)
φ2
k. (42)
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Consider the following local action

Sloc =

∫
d4x

√
−g
(

R

16πGN
− Λ

)
+

N1∑
i=1

Si +

N2∑
k=1

S̃k, (43)

where

Si = − 1

g2o

∫
d4x

√
−gF

′(Ji)

2

(
gµν∂µϕi∂νϕi + Jiϕ

2
i

)
,

S̃k = − 1

g2o

∫
d4x

√
−g

(
gµν

(
F ′′(J̃k)

4

(
∂µϕ̃k∂νφk + ∂νϕ̃k∂µφk

)
+

+
F ′′′(J̃k)

12
∂µφk∂νφk

)
+
J̃kF ′′(J̃k)

2
ϕ̃kφk +

(
J̃kF ′′′(J̃k)

12
+
F ′′(J̃k)

4

)
φ2
k

)
.

Remark 1. If F(J) has an infinity number of roots then one
nonlocal model corresponds to infinity number of different local
models. In this case the initial nonlocal action (8) generates
infinity number of local actions (43).
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Remark 2. We should prove that the way of localization
is self-consistent. To construct local action (43) we assume
that equations (28) are satisfied. Therefore, the method of
localization is correct only if these equations can be obtained
from the local action Sloc. The straightforward calculations
show that

δSloc
δϕi

= 0 ⇔ �gϕi = Jiϕi;
δSloc

δϕ̃k
= 0 ⇔ �gφk = J̃kφk. (44)

δSloc
δφk

= 0 ⇔ �gϕ̃k = J̃kϕ̃k + φk. (45)

We obtain from Sloc the Einstein equations as well:

Gµν = 8πGN (Tµν(ϕ0)− Λgµν) , (46)

where ϕ0 is given by (27) and Tµν(ϕ0) can be calculated by (38).
Any solutions of system (44)–(46) are particular solutions of

the initial nonlocal system (14)–(15).
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To clarify physical interpretation of local fields ϕ̃k and φk, we
diagonalize the kinetic terms of these scalar fields in Sloc.
Expressing ϕ̃k and φk in terms of new fields:

ϕ̃k =
1

2F ′′(J̃k)

((
F ′′(J̃k)−

1

3
F ′′′(J̃k)

)
ξk −

(
F ′′(J̃k) +

1

3
F ′′′(J̃k)

)
χk

)
,

φk = ξk + χk,

we obtain the corresponding S̃k in the following form:

S̃k = − 1

g2o

∫
d4x

√
−g

(
gµν

F ′′(J̃k)

4

(
∂µξk∂νξk − ∂νχk∂µχk

)
+

+
J̃k
4

(
(F ′′(J̃k)−

1

3
F ′′′(J̃k))ξk − (F ′′(J̃k) +

1

3
F ′′′(J̃k))χk

)
(ξk + χk) +

+

(
J̃kF ′′′(J̃k)

12
+
F ′′(J̃k)

4

)
(ξk + χk)

2

)
.
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Let us consider the model with action (8) in the case C1 ̸= 0.
If f0 ̸= 0, then we introduce a new scalar field

χ = ϕ− C1

f0
(47)

and get the previous case in terms of new field χ.

F(�g)ϕ = C1 ⇐⇒ F(�g)χ = 0. (48)

If f0 = 0, then J = 0 is a root of the characteristic equation
F(J) = 0. It is easy to show, that the function

χ̃ = ϕ0 + ψ, (49)

where ϕ0 and ψ are solutions of the following equations

F(�g)ϕ0 = 0, �gψ =
C1

f1
. (50)

is a solution for
F(�g)χ̃ = C1. (51)

The function ϕ0 is given by (27), but the sum do not include
ϕi0, which corresponds to the root J = 0, because this function
can not be separated from ψ.
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For a quadratic potential V (ϕ) = C2ϕ
2 + C1ϕ + C0

there exists the following algorithm of localization :
• Change values of f0 and Λ such that the potential takes the
form V (ϕ) = C1ϕ.

• Find roots of the function F(J) and calculate orders of them.

• Select an finite number of simple and double roots.

• Construct the corresponding local action. In the case C1 = 0
one should use formula (43). In the case C1 ̸= 0 and f0 ̸= 0
one should use (43) with the replacement of the scalar field
ϕ by χ. In the case C1 ̸= 0 and f0 = 0 the local action is (43)
plus

Sψ = − 1

2g2o

∫
d4x

√
−g
(
f1g

µν∂µψ∂νψ + 2C1ψ +
f2C

2
1

f 21

)
.

• Vary the obtained local action and get a system of the Ein-
stein equations and equations of motion.

• Seek solutions of the obtained local system.
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Conclusions

For gravitational models with minimally coupling SFT inspired
nonlocal scalar fields and quadratic potentials we obtain:

• The Ostrogradski representations for nonlocal Lagrangians
in an arbitrary metric.

• The algorithm of localization.

• Local and nonlocal Einstein equations have one and the
same solutions.

• Nonlocality arises in the case of F(�g) with an infinite num-
ber of roots.

• One system of nonlocal Einstein equations ⇔ Infinity num-
ber of systems of local Einstein equations.
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