ATLAS Electroweak Results

Giuseppe Salamanna (Nikhef) On behalf of the ATLAS Collaboration

1

Outline

- Electroweak: W, Z and (a look at) Top physics
- ATLAS at LHC: detector and data
- Physics objects involved
- A first look at
 - W/Z+jets
 - Ttbar
- Conclusions

Electroweak: W and Z

• Two-fold interest:

- commissioning of detector and performance of reconstruction (leptons, jets, Missing transverse energy...)
- Physics relevance per se:
 - * test of QCD with higher order correction (W/Z production cross-section)
 - * parton density functions in a new energy regime (W⁺/W⁻ charge asymmetry)
 - * background for most of high p_T analysis (including searches for New Physics)

LHC switched on...

Very smooth operations
ATLAS recorded Integrated
Luminosity = 3.5 pb⁻¹

• Measurements presented here have lower integrated luminosity: more coming soon!

• Results presented here are for different integrated luminosities (showing full results and on-going studies)

.. and the ATLAS detector

- All parts equally important for EW physics!
- See L.Smirnova's talk for detector and performance

Objects for W/Z analysis

Distributions studied at different integrated luminosities

Electrons

- Trigger: Level 1 (hardware) requires coarse-granularity cluster with $|\eta| < 2.5$ and $E_T > 5$ GeV
- Offline: EM calorimeter cluster matched to Inner Detector (ID) track

★ "Loose" selection

• EM cluster + ID track

*** "Medium"** selection

- tighter requirements on EM cluster and on cluster-track match
- \star "Tight" selection
- stricter track quality, γ conversion veto
- 10⁵ rejection against jets with p_T > 20 GeV for 72% reconstruction efficiency

Muons

- Trigger: Level 1 (hardware) requires 3-D coincidence in RPC $(|\eta| < 1.05)$ or TGC $(1.05 < |\eta| < 2.4)$ and $p_T > 6$ GeV
- Offline: Combined tracks from Muon spectrometer and ID, using statistical combination of the two tracks
- >94% reconstruction efficiency at p_T > 20 GeV

Missing E_T

- Missing transverse energy from calibrated 3-D topological clusters (hadron/ e^{\pm}/γ , dead material energy loss)
- Quality requirements on jets to suppress fake ME_T
- Muon term added from its p_T

Leptons from QCD

- Decays of (especially) HF in Jets originated in QCD processes create "fake" leptons to EW processes (leptons from W/Z)
 - these processes have x-sec up to 10⁵ more than signal
- Similar to Tevatron techniques, also at LHC use a lepton sample looser than the one to select signal
 - enriched in QCD fakes
 - can measure rate of QCD fakes in control region and extrapolate to signal region

W cross-section measurement with 17 nb⁻¹

Some distributions studied with higher statistics (~1 pb⁻¹)

Theoretical predictions • W(ℓv) and Z($\ell \ell$) in pp collisions (cross-section × B.R.) • from FEWZ (NNLO) calculations • MSTW2008 p.d.f. set estimated theoretical uncertainty ~4%

$$\sigma_{W \to \ell \nu}^{NNLO} = 10.46 \text{ nb} \ (\sigma_{W^+ \to \ell^+ \nu}^{NNLO} = 6.16 \text{ nb} \text{ and } \sigma_{W^- \to \ell^- \nu}^{NNLO} = 4.30 \text{ nb})$$

 $\sigma_{Z/\gamma^* \to \ell\ell}^{NNLO} = 0.99 \text{ nb} \quad (66 \text{ GeV} < M(11) < 116 \text{ GeV})$

Final signal selections

- •1 TIGHT electron
- $ME_T > 25 \text{ GeV}$
- $M_T(W) > 40 \text{ GeV}$

$$M_{T} = \sqrt{2(p_{T}^{\mu})(E_{T}^{\text{miss}})(1 - \cos(\varphi^{\mu} - \varphi^{E_{T}^{\text{miss}}}))}$$

- 1 Combined muon
- $p_T > 20 \text{ GeV}$
- Track isolated in ID
- $ME_T > 25 \text{ GeV}$

Selected lepton kinematics

$\begin{array}{c} Muon \ p_T \ after \\ all \ W \ selections \end{array}$

 $\begin{array}{c} Electron \ E_{\rm T} \ after \\ all \ W \ selections \end{array}$

Selected Signal kinematics

- After ME_T and $M_T(W)$ cuts
- clear W signal over almost negligible background

Cut flow Integrated Lumi = 17 nb⁻¹

Requirement e channel	Number of candidates
Triggered (Section 5)	2.4×10^{6}
Preselection (Section 6)	5.1×10^{3}
Tight electron (Section 4.1)	177
$E_{\rm T}^{\rm miss} > 25 { m ~GeV}$	49
$m_{\rm T} > 40~{\rm GeV}$	46

Requirement	Number of
µ channel	candidates
Triggered (Section 5)	2.0×10^{6}
Preselection (Section 6)	1155
$p_{\rm T} > 20 { m ~GeV}$	420
$\sum p_T^{ID}/p_T < 0.2$	186
$E_{\rm T}^{\rm miss} > 25 { m GeV}$	77
$m_{\rm T} > 40 {\rm ~GeV}$	72

Background estimation: QCD, e

- in Electron channel: Heavy-Flavour decays, conversions, hadrons faking electrons
- Use calorimetry isolation E_T
 - fit Loose electrons in data with MC templates (higher statistics)
 - then extrapolated to signal region

Background estimation: QCD,

- "ABCD" method to predict background in signal region from control regions dominated by bkg (jets, π/K decays)
- **Uncorrelated** variables: ME_T and track Isolation/ p_T \bigcirc
- QCD in signal region: 0.9 ± 0.3 (stat) ± 0.6 (syst)

Background estimation: ALL

		From	From	
		MC	DATA	
l	Observed	Background	Background	Background-subtracted
	candidates	(EW)	(QCD)	signal N_W^{sig}
<i>e</i> ⁺	27	$0.9 \pm 0.0 \pm 0.1$	$0.6 \pm 0.1 \pm 0.3$	$25.6 \pm 5.2 \pm 0.3$
<i>e</i> ⁻	19	$0.6 \pm 0.0 \pm 0.1$	$0.6 \pm 0.1 \pm 0.3$	$17.8 \pm 4.4 \pm 0.3$
e^{\pm}	46	$1.5 \pm 0.0 \pm 0.1$	$1.1 \pm 0.2 \pm 0.4$	$43.4 \pm 6.8 \pm 0.4$
μ^+	47	$2.4 \pm 0.0 \pm 0.2$	$0.7 \pm 0.3 \pm 0.5$	$43.8 \pm 6.9 \pm 0.6$
μ^{-}	25	$2.0 \pm 0.0 \pm 0.2$	$0.2 \pm 0.1 \pm 0.2$	$22.8 \pm 5.0 \pm 0.3$
μ^{\pm}	72	$4.4 \pm 0.0 \pm 0.3$	$0.9 \pm 0.3 \pm 0.6$	$66.7 \pm 8.5 \pm 0.7$

• EW processes better known: take from MC

•Larger muon than electron signal due to different reconstruction efficiency $(78\%(e) vs 97\%(\mu))$

• Larger EW bkg in muon channel from large $Z \rightarrow \mu \mu$ decays (with fake ME_T) and $W \rightarrow \tau \nu$

Towards the cross-section...

$$\sigma_{tot} = \sigma_W \times BR(W \to \ell \nu) = \frac{N_W^{sig}}{A_W C_W L_{int}},$$

Geometrical acceptance (generator level) at Born level

Correction factor (detector level)

Electron channel		
Trigger efficiency	0.999 ± 0.001 (tot)	
Reconstruction/identification efficiency	$0.78 \pm 0.05(syst)$	

Final
$$C_W$$

 $C_W(e) = (65.6 \pm 5.3)\%$
 $C_W(\mu) = (81.4 \pm 5.6)\%$

Muon channel		
Trigger efficiency	$0.88 \pm 0.01 \pm 0.03$	
Reconstruction/identification efficiency	$0.97 \pm 0.01 \pm 0.04$	
Trigger scale factor	$0.97 \pm 0.01 \pm 0.04$	
Reconstruction scale factor	$0.99 \pm 0.01 \pm 0.04$	

W cross-section

L = 16.9 nb ⁻¹	Estimated N(signal)	cross-section (nb)
W(ev)	46	8.5 ± 1.3 (stat) ± 0.7 (syst) ± 0.9 (lumi)
₩(μν)	72	10.3 ± 1.3 (stat) ± 0.8 (syst) ± 1.1 (lumi)
Combined	118	9.3 ± 0.9 (stat) ± 0.6 (syst) ± 1.0 (lumi)

Theory:

 $\sigma_{W \to \ell \nu}^{NNLO} = 10.46 \text{ nb} \quad (\sigma_{W^+ \to \ell^+ \nu}^{NNLO} = 6.16 \text{ nb} \text{ and } \sigma_{W^- \to \ell^- \nu}^{NNLO} = 4.30 \text{ nb})$

First point at 7 TeV...

• Remarkable agreement with theory (4% theor. uncertainty not shown)

• W^{+/-} asymmetry due to parton composition in protons observed

Z cross-section measurement with 225 nb⁻¹

Some distributions studied with higher statistics (~1 pb⁻¹)

Final signal selections

- •2 MEDIUM electrons
- $E_T > 20 \text{ GeV}$
- Opposite charge

- •2 Combined mu
- p_T > 20 GeV
- Opposite charge
- Track in ID isolated

$66 < M(l^+l^-) < 116 \text{ GeV}$

Backgrounds negligible!

Z Mass fit

- Fit using theoretical lineshape \otimes Gaussian
- Electron: width = (3.2 ± 0.3) GeV • compatible with test beams and insitu $\pi^0 \rightarrow \gamma\gamma$
- Muon: width = (3.3 ± 0.3) GeV
 - slightly worse than expected due to misalignment of ID or MS

Cut flow Integrated Lumi ~220 nb⁻¹

	Electron channel	Muon channel
Requirement	Number of	Number of
	candidates	candidates
Triggered	4.4×10^{6}	3.8×10^{6}
$\ell^+\ell^-$ pairs	51	85
$66 < m_{\ell^+ \ell^-} < 116 {\rm GeV}$	46	79

Electron channel * Calo trigger with $E_T > 10 \text{ GeV}$ (for ~90% data) * L = 219 nb⁻¹ Muon channel * Muon trigger with P_T > 6 GeV (for ~90% data) * L = 229 nb⁻¹

Background estimation: QCD

- Electrons:
 - Predict Loose-Loose pairs from MC
 - then extrapolate to Medium electron (signal region)
 - Predicted QCD evts in signal region: 0.49 ± 0.07 (stat) ± 0.05 (syst)
 - Same-sign pair passing other cuts: 1
- Muons:
 - From simulation
 - Predicted QCD evts in signal region: 0.17 ± 0.01 (stat) ± 0.01 (syst)
 - Same-sign pair passing other cuts: O

Towards the cross-section...

 $\sigma_{tot} = \sigma_{Z/\gamma^*} \times BR(Z/\gamma^* \to \ell\ell) = \frac{N_Z^{sig}}{A_Z C_Z L_{in}}$

Geometrical acceptance (generator level) at Born level

Correction factor (detector level)

Final C_Z $C_Z(e) = (64.5 \pm 9.0)\%$ $C_Z(\mu) = (79.7 \pm 5.5)\%$

Syst. uncertainty on A_Z = 3%
LO-NLO differences and PDF dependence

Syst uncert. on $C_Z = 14(7)\%$ for e (mu)

• Trigger and reconstruction data/MC discrepancies

Z cross-section

L = ~225 nb ⁻¹	Estimated N(signal)	cross-section (nb)
Z(ev)	46	0.72 ± 0.11 (stat) ± 0.10 (syst) ± 0.08 (lumi)
Ζ(μν)	79	0.89 ± 0.10 (stat) ± 0.07 (syst) ± 0.10 (lumi)
Combined	125	0.83 ± 0.07 (stat) ± 0.06 (syst) ± 0.09 (lumi)

Theory:

 $\sigma_{Z/\gamma^* \to \ell\ell}^{NNLO} = 0.99 \text{ nb}$

(66 GeV < M(ll) < 116 GeV)

First point at 7 TeV...

- Good agreement with theory
- 4% theoretical uncertainty not shown

W/Z + jets studies

Preliminary data-MC agreement with 0.9 pb⁻¹

Z boson with $p_T = 144$ GeV muon $p_T = 96$ GeV and 68 GeV M(mumu) = 79 GeV: the harder muon has left a significant energy deposit, presumably through bremsstrahlung The jet E_T are 168, 105, and 45 GeV

Jet multiplicity in W/Z evts

 $\cdot W/Z(lv) + jets$

•Anti- k_T jet algorithm with R=0.4, $|\eta| < 2.8$ and $p_T > 20$ GeV •MC normalized to inclusive data sample

Leading Jet pr

- Same W/Z selections as Inclusive cross-section
- Jets overlapping in space with the lepton are removed
- Background estimation entirely from simulation

W/Z + jets (and others) as background for Top quark

 $L = 280 \text{ nb}^{-1}$

Ttbar cross-section

Cross-section measurement is **first** place where things can 'go wrong' w.r.t. SM in busy events

Ttbar cross-section

- Consider 1 lepton + jets events: BR $\sim 30\%$ (e or μ)
- Also di-leptonic channel considered
- Wrap them all up: Top is next step in detector

commissioning!

Complementary to W/Z + jets analysis
Focuses on higher jet multiplicities

Lepton+jets channel

consistent with MC expectations LJ5LJ3LJ4 LJ2 W+j and QCD: biggest bkg >0.35 90 02 0.3 ATLAS Preliminary Simulation <u>ළ</u>0.25 e+jets Ъ О.2 $\Box t\bar{t}$ QCD ď single t Laction 0.15 0.1 Z+jets W+jets 0.05 80 100 120 140 160 180 200 40 60 E^{miss}[GeV]

• 10 GeV lepton trigger • = 1 isolated lepton (medium e or combined μ), $p_T > 20$ GeV, $|\eta| < 2.5$ • ≥ 4 Anti- k_T 0.4 Jets ($p_T > 20$ GeV) • ≥ 1 b-tag using SVO tagger with cut corresponds to 50% b-jet eff. • ME_T > 20 GeV

7 candidates (LJ) in 280 nb⁻¹

Di-Lepton channel

2 candidates in 280 nb⁻¹ **Z+ jets biggest bkg**

- 10 GeV lepton trigger
- = 2 isolated lepton (medium e or combined μ), p_T > 20 GeV, $|\eta| < 2.5$, Opposite charge, M(Z) veto
- \geq 2 Anti-k_T 0.4 Jets (p_T > 20 GeV)
- Σp_T (lep, jet) >150 GeV (e+ μ)
- $ME_T > 40(ee)/30(\mu \mu) GeV$

e+µ candidate!

Red: Isolated muon track ($p_T = 48 \text{ GeV}$); Green: isolated electron track pointing to a green Calo cluster ($E_T = 23 \text{ GeV}$) blue circle in lego plot: b-tagged jet. Dashed line in lego plot: direction of the missing transverse energy (77 GeV)

QCD bkg: first results

- Use Matrix Method
- sample of **Loose** leptons (more QCD)
 - standard lepton cuts w/o quality/isolation cuts

- Obtain: N_{fake}^{tight} = estimated number of leptons from QCD in signal region
- Cross-check with ABCD: agreement to within 30%

Ttbar + QCD from data

- With looser signal selections
- QCD normalization from estimation on data (± $1\sigma_{stat}$)
- others (W+jets) from MC
- Good agreement with expectations

Conclusions

• Initial studies on EW processes gave chance to:

- commission ATLAS
- test SM expectations on W/Z production cross-sections
- W/Z inclusive x-sec agree with theory
- With more data:
 - refined W asymmetry
 - W/Z + jets exclusive measurements
 - Ttbar x-sec relying on data for EW (and QCD) bkg estimations

Stay Tuned!

W: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-051/ Z: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-076/ Top:https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-063/ https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-087/

Back-up

Sign/bkg MC expectations

Example: Sig = W; Bkg = Z + ttbar + QCD

Physics process	Cross section (nb) [× BR]
$W \rightarrow ev$	10.46
$W \rightarrow \mu \nu$	10.46
$W \rightarrow \tau \nu$ (electron channel analysis)	10.46
$W \rightarrow \tau \nu \rightarrow \mu \nu \nu$	3.68
$Z \rightarrow ee \ (m_{\ell\ell} > 60 \text{ GeV})$	0.99
$Z \rightarrow \mu \mu \ (m_{\ell \ell} > 60 \text{ GeV})$	0.99
$Z \rightarrow \tau \tau \ (m_{\ell \ell} > 60 \text{ GeV})$	0.99
$t\bar{t}$	0.16
Dijet (electron channel, $\hat{p}_{T} > 15 \text{ GeV}$)	1.15×10^{6}
Dijet (muon channel, $8 < \hat{p}_{T} < 17 \text{ GeV}$)	9.86×10^{6}
Dijet (muon channel, $17 < \hat{p}_T < 35 \text{ GeV}$)	6.78×10^{5}
Dijet (muon channel, $35 < \hat{p}_T < 70 \text{ GeV}$)	4.10×10^{4}
Dijet (muon channel, $70 < \hat{p}_T < 140 \text{ GeV}$)	2.20×10^{3}
Dijet (muon channel, $140 < \hat{p}_T < 280 \text{ GeV}$)	0.88×10^{2}
Dijet (muon channel, $280 < \hat{p}_T < 1120 \text{ GeV}$)	2.35
$b\overline{b}$ (muon channel, $\hat{p}_{\rm T} > 15 {\rm GeV}$)	7.39×10^{4}
$c\overline{c}$ (muon channel, $\hat{p}_{\rm T} > 15 {\rm ~GeV}$)	2.84×10^4

QCD can be estimated directly from data

Wasymmetry

Asymmetry predicted to be different from zero at p-p colliders (valence quarks): ~0.2 (from theo)
varies as a function of lepton η (correlation with kinematic phase space of incoming partons)

 $A = 0.33 \pm 0.12 \pm 0.01$

Selected Signal kinematics

