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Main results at RHIC

I Multiplicities much lower than pre-RHIC predictions
indicating strong coherence in particle production
mechanisms.

I Observed elliptic flow is in agreement with hydrodynamics
of (almost) ideal liquid indicating creation of dense
strongly coupled matter

I New structures in the near-side (ridge) and away-side
(Cherenkov/Mach cones) angular correlations

I Significant reduction in the yield of particles with large
transverse momentum (jet quenching)
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Basis of coherence in particle production: growth of gluon density at
small Bjorken x at fixed Q2:
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”Phase diagram” in the x - Q2 plane:
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Immediately after collisions there form longitudinal chromoelectric and
chromomagnetic fields - glasma :
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Temporal evolution of longitudinal and transverse fields:
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Initial multiplicity and energy density
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Instabilities of the boost-invariant solution

I Rapidity-dependent configurations generate explisively growing
transverse fields

|E⊥|, |B⊥| ∼ e
√

Qsτ

I New mechanism of energy losses

I Turbulent isotropisation?

I Quantum corrections to the glasma picture: GLV - BK - JIMWLK
equations



Glauber geometry
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Classification in centrality



Scaling in Npart
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Elliptic flow



Elliptic flow: some definitions

• Directed and elliptic flow v1 and v2

N

dp2
⊥dyd(φ−Ψ)

=
dN

dp2
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[1 + 2v1 cos (φ−Ψ) + 2v2 cos (2(φ−Ψ)) + · · ·]

Ψ : a reaction plane angle

• Spatial anisotropy εx and elliptic flow

εx =
〈y2 − x2〉
〈y2 + x2〉 ; v2 ∼ εx

1

Soverlap

dN
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• Momentum anisotropy εp

εx =
Txx − Tyy 〉
〈Txx + Tyy 〉 ; v2 ∼ εp/2



Elliptic flow: experimental data



Elliptic flow: experimental data



Elliptic flow: theory

I Measured elliptic flow at small transverse momenta agrees with
predictions of hydrodynamics of almost ideal (low viscosity) liquid

I Quantitative description requires full three-dimensional viscous
hydro taking into account fluctuations of initial conditions

I Exciting theoretical developments: physics of sQGP as conformal
relativistic hydrodynamics, etc.

I Exciting perspectives for theoretical development: turbulence in
sQGP



Two-particle correlations: Ridge



Two-particle correlations: Ridge

I Experimental situation is not very clear

I Theoretical explanations are not precise and not convicing



Experimental data on two-particle azimuthal correlations
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Theory of two-particle azimuthal correlations

I Two possible explanations: Cherenkov gluons and Mach cones

I Description in terms of Cherenkov gluons possible. Its validity
depends on the validity of quasiparticle approach to sQGP.

I Description in terms of Mach cones possible for special initial
conditions. Difficult to get transverse momentum dependence of the
away-side structure.



Jet quenching

Rh
AB (p⊥, y | centrality) =

dNAB→h

dp⊥dy

〈NAB
coll(centrality)〉 dNpp→h

dp⊥dy
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Jet quenching: theory

I Quenching of heavy quarks not understood

I Charmonium quenching not understood

I Models with calculation energy loss still not too realistic

I Expected progress: accurate treatment of coherence length

I Expected progress: Energy loss in ADS/CFT. Drastic prediction:
limiting value for the energy loss.



In-medium QCD cascade
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In-medium QCD cascade: models

• Two types of QCD cascades:

• Cascade driven by degradation of virtuality (DGLAP)
• Cascade driven by medium-induced particle production (similar

to electromagnetic showers in matter)

• Rigorous description combining both effects is currently not available.
Medium effects are taken into account by phenomenological
”deformations” of one of the two basic alternatives

• Most studies ”deform” the DGLAP evolution.



EXPERIMENTAL RESULTS ON JET STRUCTURE AT RHIC

Ratio of fragmentation functions in AA and pp collisions

STAR preliminary

stat. errors only

pt,jet
rec.(pp)>30 GeV

STAR preliminary

stat. errors only

pt,jet
rec.(pp)>30 GeV



Current conclusions on the experimental situation:

• Observed fragmentation functions in AA collisions are the same as in
pp ones.

• Natural explanation: jet finding procedures bias the ensemble in such
a way that only jets coming from the surface of the hot fireball are
detected.

• Prospects of improving the situation unclear.



Predictions for
LHC: multiplicity
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Predictions for LHC : RAA
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Predictions for LHC : conservative expectations

I Coherence effects in multiparticle production stronger
than at RHIC

I Elliptic flow less or similar than at RHIC

I Jet quenching similar at intermediate transverse
momenta, weaker at large

I In general: more intense and longer living sQGP, similar
hadronization

I We’ll learn some of it by the end of 2010. First heavy ion
run at LHC: November 2010



Unique window of opportunities for QCD-based research of
multiparticle production!

• Heavy ion collision became big science:

• Astonishingly diverse and accurate experimental data

• Possibility of testing deepest aspects of
high-energy high-density QCD through using most
advanced methods from QFT, gravity and string theory


