New Results from BABAR

Vladimir Golubev

Budker Institute of Nuclear Physics, Novosibirsk, Russia

(for the BaBar Collaboration)

QFTHEP'2010 Golitsyno, Moscow, September 8–15, 2010

Outline

- BABAR detector
- Evidence for direct CP violation in the measurement of the CKM angle γ with $B^{\mp} \rightarrow D^{(*)}K^{(*)\mp}$ decays
- Semileptonic $b \rightarrow c \ell_V$ decays
- Semileptonic $b \rightarrow u \ell_V$ decays
- Measurement of $b \rightarrow d\gamma$, $b \rightarrow s\gamma$, and $|V_{td}/V_{ts}|$
- Study of two-photon production of pseudoscalar mesons

BABAR Detector

BABAR Detector

Final BABAR dataset: $N(Y(4S) \rightarrow B\overline{B}) = 470 \times 10^{6}$ Off Peak Luminosity 53.85 fb⁻¹ $N(Y(3S)) = 122 \times 10^{6}$ $N(Y(2S)) = 100 \times 10^{6}$

CKM angle γ

- The CKM angle γ is the only CP-violation parameter, which can be cleanly determined from tree-level *B*-meson decays. Its precise determination is an important goal of present and future experiments in flavor physics
- The γ angle can be determined using $B^{\mp} \rightarrow DK^{\mp}$ decays using interference between color-favored $B^{-} \rightarrow D^{0}K^{-}$ and color-suppressed $B^{-} \rightarrow \overline{D}^{0}K^{-}$ decays with D^{0} and \overline{D}^{0} decays to a common final state
- New BABAR results [arXiv:1005.1096] are based on Dalitz-plot analysis of eight decay modes for each *B*-meson sign: B[±]→DK[±], B[±]→D* [Dπ⁰]K[±], B[±]→D* [Dγ]K[±], and B[±]→DK^{*±} final states with D→K_Sπ⁺π⁻, K_SK⁺K⁻ full statistics of 468 million BB pares

CKM angle γ from $B \rightarrow DK$ decays

- \bullet Use common final states for D^0 and $\overline{D}{}^0$
- Largely unaffected by New Physics
- \bullet Clear theoretical interpretation of observables in terms of γ
- Difficulty: small BFs due to CKM suppression $(10^{-5}-10^{-7})$, so not many events) and $r_{B}=|A_{ub}|/|A_{cb}|$ is small due to further CKM and color suppressions (small interference)
- All measurements are statistically limited

Analysis methods for charged $B \rightarrow D^{(*)0} K^{(*)} (r_B \sim 0.1)$

• GLW [1]: D⁰ decay final states: CP-even: K⁺K⁻, $\pi^+\pi^-$, and CP-odd: K_S π^0 , K_S ω , K_S ϕ

- ADS [2]: D⁰ decay final states: $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+\pi^-$ and CP-conj
- Dalitz-plot [3]: D⁰ decay final states: $\pi^0\pi^+\pi^-$, K_S $\pi^+\pi^-$, K_SK⁺K⁻

[1] Gronau, London, Wyler, PLB 253, 483 (1991); PLB 265, 172 (1991)

- [2] Atwood, Dunietz, Soni, PRL 78, 3357 (1997)
- [3] Giri, Grossman, Soffer, Zupan, PRD 68, 054018 (2003);

BABAR, Callabera in Home Page

Evidence for direct CP violation in the measurement of the CKM angle γ with $B^{\mp} \rightarrow D^{(*)}K^{(*) \mp}$ decays: GLW method

- Sub. to Phys. Rev. D Reconstruct $B^{\pm} \rightarrow DK^{\pm}$ final states with $D \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}$ (CP even) and $D \rightarrow K_S \pi^0, K_S \omega, K_S \phi$ (CP odd) (five different final states for each B charge)
- Extract signal yields fitting directly to observables $R^{\pm}_{K/\pi}$, $R_{K/\pi}$, and $A_{CP\pm}$

$$R_{K/\pi}^{\pm} = \frac{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}\pi^-) + \Gamma(B^+ \to D_{CP\pm}\pi^+)}; \qquad R_{K/\pi} = \frac{\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to \overline{D}^0K^+)}{\Gamma(B^- \to D^0\pi^-) + \Gamma(B^+ \to \overline{D}^0\pi^+)}$$

$$A_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}K^-) - \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to \overline{D}_{CP\pm}K^+)}; \qquad R_{CP\pm} = 2\frac{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to \overline{D}_{CP\pm}K^+)}{\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to \overline{D}^0K^+)}$$

$$R_{CP\pm} = \frac{R_{CP\pm}^{\text{esults:}}}{R_{CP\pm}} \approx \frac{R_{K/\pi}^{\pm}}{R_{K/\pi}}$$

Results:

 $A_{CP+} = 0.25 \pm 0.06 (stat) \pm 0.02 (syst)$ $A_{CP} = -0.09 \pm 0.07(stat) \pm 0.02(syst)$ $R_{CP+} = 1.18 \pm 0.09 (stat) \pm 0.05 (syst)$ $R_{CP} = 1.07 \pm 0.08(stat) \pm 0.04(syst)$

Significance of CPV in $B^{\pm} \rightarrow DK^{\pm}$ from A_{CP} + is 3.6 σ , which constitutes first evidence for direct CP violation in B \rightarrow DK decays

$$x_{\pm} = \frac{1}{4} \Big[R_{CP+} (1 \mp A_{CP+}) - R_{CP-} (1 \mp A_{CP-}) \Big] \longrightarrow \begin{array}{c} x_{-} - x_{+} (\text{Dalitz}) = 0.163 \pm 0.055 \\ x_{-} - x_{+} (\text{GLW}) = 0.189 \pm 0.062 \end{array}$$
(3.0 σ)
(3.1 σ)

QFTHEP'2010, Moscow

arXiv:1007.0504.

Evidence for direct CP violation in the measurement of the CKM angle γ combined Dalitz-plot and GLW method results

 $x_{-} - x_{+}$ (Dalitz + GLW) = 0.175 ± 0.040

4.4 σ significance of CPV in B[±] \rightarrow DK[±] only, Dalitz+GLW combined

Semileptonic B-meson decays $b \rightarrow c l_V$

Reconstructed D_S decay modes: $\phi(K^+K^-)\pi$; $K^{*0}(K^{\pm}\pi^{\mp})$; $K_S(\pi^+\pi^-)K$ Signal yields are extracted via extended maximum likelihood fit to missing mass

 $\mathcal{B}(B \to D_s^+ K^- \ell^- \bar{\nu}_\ell) = (6.13^{+1.04}_{-1.03} stat. \pm 0.43_{syst.} \pm 0.51(\mathcal{B}(D_s))) \times 10^{-4}$

Semileptonic B-meson decays $b \rightarrow u \ell_V$

Study of $B \rightarrow \pi \ell v$ and $B \rightarrow \rho \ell v$ decays and determination of $|V_{ub}|$

Physics goals: measure |Vub| and test QCD calculations of form factors Form factor parameterization:

Study of $B \rightarrow \pi \ell \nu$ and $B \rightarrow \rho \ell \nu$ decays

Study of $B \rightarrow \pi \ell v$ and $B \rightarrow \rho \ell v$ decays: comparison with theory

Study of $B \rightarrow \pi \ell \nu$ and $B \rightarrow \rho \ell \nu$ decays

Study of $B \rightarrow \pi \ell v$ and $B \rightarrow \rho \ell v$ decays: determination of $|V_{ub}|$ from full q² range

σ_{total}=10.5%

Measurement of b \rightarrow d γ , b \rightarrow s γ , and |V_{td}/V_{ts}|

arXiv: 1005.4087

Radiative penguin transitions are flavor changing neutral currents, forbidden at tree level at Standard Model

 $b{\rightarrow}d\gamma$ transition is CKM suppressed with respect to $b{\rightarrow}s\gamma$ by a factor ~20 in the SM

Motivation

Analysis of equivalent $b \rightarrow d\gamma$ and $b \rightarrow s\gamma$ decays can be used to measure the |Vtd/Vts| ratio of CKM matrix elements:

Constraint on $|V_{td}/V_{ts}|$ is independent of measured from B_S/B_d mixing frequencies: discrepancies between two could indicate new physics Theoretical uncertainty for the $|V_{td}/V_{ts}|$ ratio is ~8% for exclusive b \rightarrow s,d γ decay modes and ~1%(?) for inclusive decays ratio.

Analysis Overview Measure partial branching fractions of sum of seven decay modes in four regions:

- $B \rightarrow X_d \gamma$ and $B \rightarrow X_s \gamma$
- Low hadronic mass (0.5<m_{had}<1.0 GeV/c²), dominated by $B \rightarrow (\rho, \omega)\gamma$ and $B \rightarrow K^*\gamma$ resonances
- High hadronic mass (1.0 < m_{had} < 2.0 GeV/c²), containing non-resonant decays

Extrapolate from partial to inclusive BFs within each mass bin

- Need to include unreconstructed decay modes – requires knowledge of fragmentation of hadronic systems X_d and X_s

Combine mass ranges for inclusive BFs in m_{had} < 2.0 GeV/c² and calculate $|V_{td}/V_{ts}|$

• For $|V_{td}/V_{ts}|$ – need to extrapolate to all masses. This extrapolation is based on theoretical model of photon spectrum, not on experimental data

Used full BABAR dataset of $471 \times 10^6 \text{ BB}$ pairs

Maximum likelihood fit results for $B \rightarrow X_S \gamma$ (M_{ES} and ΔE projections)

Maximum likelihood fit results for $B \rightarrow X_d \gamma$ (M_{ES} and ΔE projections)

Inclusive BF

Results:

Partial BF

 $\begin{array}{lll} B {\rightarrow} X_{s^{\gamma}} & \text{low mass} & (1.89 {\pm} \ 0.08 \ {\pm} 0.08) {\times} 10^{-5} & (3.83 {\pm} \ 0.16 \ {\pm} 0.15) {\times} \ 10^{-5} \\ B {\rightarrow} X_{s^{\gamma}} & \text{high mass} & (6.57 {\pm} \ 0.28 \ {\pm} 0.59) {\times} 10^{-5} & (19.2 {\pm} \ 0.8 \ {\pm} 1.7 {\pm} 2.3) {\times} \ 10^{-5} \\ B {\rightarrow} X_{d^{\gamma}} & \text{low mass} & (1.20 {\pm} \ 0.31 \ {\pm} 0.11) {\times} 10^{-6} & (1.25 {\pm} \ 0.32 \ {\pm} 0.12) {\times} \ 10^{-6} \\ B {\rightarrow} X_{d^{\gamma}} & \text{high mass} & (3.21 {\pm} \ 0.81 \ {\pm} 0.46) {\times} 10^{-6} & (7.90 {\pm} \ 1.98 \ {\pm} 1.12 {\pm} 1.88) {\times} \ 10^{-6} \end{array}$

Inclusive branching fractions for m_{had} < 2.0 GeV/c²:

 $\begin{array}{rll} \mathsf{BF}(\mathsf{B}{\rightarrow}\mathsf{X}_{\mathsf{s}}\gamma) = & (23.0\pm\ 0.8\ \pm1.9\ \pm2.3){\times}10^{-5} \\ \mathsf{BF}(\mathsf{B}{\rightarrow}\mathsf{X}_{\mathsf{d}}\gamma) = & (9.15{\pm}\ 2.01\ \pm1.24\ \pm1.88){\times}10^{-6} \end{array}$

Theoretical formula for |Vtd/Vts| is based on total inclusive BF, so extrapolation of measured inclusive branching fraction to full hadronic mass range is needed. Extrapolation is done according to Kagan-Neubert photon spectrum model [PRD **58**, 094012 (1998)]. Additional error (model) – from b-quark mass uncertainty

 $\begin{array}{ll} \mathsf{BF}(\mathsf{B}{\to}\mathsf{X}_{\mathsf{s}}\gamma) = & (38.2\pm1.3(\mathsf{stat.})\pm3.2(\mathsf{syst.})\pm3.8(\mathsf{extrap.})\pm1.6(\mathsf{model})){\times}10^{-5} \\ \mathsf{BF}(\mathsf{B}{\to}\mathsf{X}_{\mathsf{d}}\gamma) = & (15.3\pm3.4(\mathsf{stat.})\pm2.1(\mathsf{syst.})\pm3.2(\mathsf{extrap.})\pm0.3(\mathsf{model})){\times}10^{-6} \\ \mathsf{BF}(\mathsf{B}{\to}\mathsf{X}_{\mathsf{d}}\gamma)/ \ \mathsf{BF}(\mathsf{B}{\to}\mathsf{X}_{\mathsf{s}}\gamma) = & 0.040\pm0.009(\mathsf{stat.})\pm0.005(\mathsf{syst.})\pm0.010(\mathsf{extrap.}) \\ (\mathsf{model\ error\ cancels\ in\ BF\ ratio}) \end{array}$

|V_{td}/V_{ts}| Extraction:

$$\frac{\Gamma(b \to d\gamma)}{\Gamma(b \to s\gamma)} = \zeta^2 \left| \frac{V_{td}}{V_{ts}} \right|^2 (1 + \Delta R)$$

The values of ζ and ΔR are calculated using the Wolfenstein ρ and η parameters as input. Since the world average of these parameters is based on previous |Vtd/Vts| measurements the ρ and η parameters were re-expressed using world average of CKM angle β [HFAG, E. Barberio *et al.* arXiv:0704.3575(hep-ex)]

Full mass region:

 $|V_{td}/V_{ts}|=0.199\pm0.022(stat.)\pm0.012(syst.)\pm0.027(extrap.)\pm0.002(th.)$

Cross-check: low mass region only: $|V_{td}/V_{ts}|=0.197\pm0.026(stat.)\pm0.009(syst.)\pm0.010(th.)$

agreement with previous measurements:

BABAR $|V_{td}/V_{ts}|=0.233\pm0.025(exp.)\pm0.023(th.)$ [BaBar collab. PRL 98, 151802 (2007)] Belle $|V_{td}/V_{ts}|=0.195\pm0.020(exp.)\pm0.015(th.)$ [Belle collab. PRL 101, 111801 (2008)]

Conclusions

- First significant measurement of non-resonant $b \rightarrow d\gamma$ decays
- Measurements of $B \rightarrow K^*\gamma$, $b \rightarrow s\gamma$, and $B \rightarrow (\rho, \omega)\gamma$ are compatible with previous results
- Measurement of |V_{td}/V_{ts}| is compatible and competitive with previous results with significantly smaller theoretical uncertainty.

Study of two-photon processes $e^+e^- \rightarrow e^+e^-P$

• Electrons are scattered predominantly at small angles.

• For pseudo scalar meson production the cross section depends on only one form factor $F(q_1^2, q_2^2)$, which describes the $\gamma^*\gamma^* \rightarrow P$ transition.

No-tag mode: \checkmark both electrons are undetected $\checkmark q_1^2, q_2^2 \approx 0$ $\checkmark \Gamma_{\gamma\gamma}$ or F(0,0) \checkmark Study of resonance parameters Single-tag mode: \checkmark one of electrons is detected $\checkmark Q^2 = -q_1^2$ $\checkmark d\sigma/dQ^2 \sim 1/Q^6$ for light mesons $\checkmark F(Q^2, 0)$

$e^+e^-\!\to e^+e^-\!\eta_c$, $\eta_c\!\to K_S\,K^+\pi^-$, no-tag mode

J.P.Lees et al., PRD **81**, 052010 (2010)

 η_{C} resonance parameters:

	Mass, MeV	Width, MeV
PDG	2980.5±1.2	27.4±2.9
BABAR(88 fb ⁻¹)	2982.5±1.1±0.9	34.3±2.3±0.9
BABAR(470 fb ⁻¹),	2982.2±0.4±1.5	31.7±1.2±0.8

Main sources of systematic uncertainties are unknown background shape and possible interference between the η_{c} and non-resonant two-photon amplitudes.

 $N(\eta_c)=13890\pm320\pm670$

BABAR: $\Gamma(\eta_c \rightarrow \gamma \gamma) B(\eta_c \rightarrow KK\pi) = 0.379 \pm 0.009 \pm 0.031 \text{ keV}$ PDG: 0.44±0.04 keV, CLEO: 0.407±0.022±0.028 keV

 $e^+e^- \rightarrow e^+e^-\eta_c(2S)$, no-tag mode

 $\begin{array}{c} 1190{\pm}130{\pm}180\\ \eta_c \text{(2S) events are}\\ \text{observed.} \end{array}$

$e^+e^- \rightarrow e^+e^- P$, single tag

x is the fraction of the meson momentum carried by one of the quarks

> Nonperturbative pion distribution amplitude (DA) describing transition $P \rightarrow q\overline{q}$

Data on the form factor are used to test phenomenological models for the meson distribution amplitude.

$e^+e^- \rightarrow e^+e^- P$, single tag event selection

 ✓ electron is detected and identified
 ✓ meson decay products are detected and reconstructed
 ✓ electron + meson system has low p_t
 ✓ missing mass in an event is close to zero

 $dN/dQ^2 \longrightarrow d\sigma/dQ^2 \longrightarrow |F(Q^2)|$

$e^+e^- \rightarrow e^+e^-\,\eta_C\,$ form factor

J.P.Lees et al., PRD **81**, 052010 (2010)

The form factor is normalized to F(0) obtained from no-tag data

The form factor data are fit with the monopole function

 $F(Q^2) = F(0)/(1+Q^2/\Lambda)$

The result Λ =8.5±0.6±0.7 GeV² does not contradict to the vector dominance model with Λ = $m^2_{J/W}$ =9.6 GeV².

PQCD: Due to relatively large c-quark mass, the η_c form factor is rather insensitive to the shape of the η_c distribution amplitude. A is expected to be about 10 GeV² (T. Feldmann, P.Kroll, Phys. Lett. B 413, 410 (1997)).

 Lattice QCD: Λ=8.4±0.4 GeV² (J.J.Dudek, R.G.Edwards, Phys. Rev. Lett. 97, 172001 (2006)).

η and η' form factors

Systematic uncertainties independent of Q^2 are 2.9% and 3.5% for η and η' form factors, respectively

CLEO and BABAR data on time-like form factor extracted from $e^+e^- \rightarrow \eta^{(\prime)}\gamma$ cross section measurements at Q^2 =14.2 GeV² (CLEO) and 112 GeV² (BABAR) are added

1

 η - η ' mixing in the quark-flavor basis: $|\eta\rangle = \cos\phi|n\rangle - \sin\phi|s\rangle; \quad |\eta'\rangle = \sin\phi|n\rangle + \cos\phi|s\rangle; \text{ where } |n\rangle = \frac{1}{\sqrt{2}} \left(|\overline{u}u\rangle + |\overline{d}d\rangle\right); \quad |s\rangle = |\overline{s}s\rangle$

The form factors for $|n\rangle$ and $|s\rangle$ states are introduced:

$$F_{\eta} = \cos\phi F_n - \sin\phi F_s, \quad F_{\eta'} = \sin\phi F_n + \cos\phi F_s$$

with asymptotic limits $Q^2 F_s(Q^2) = \frac{2}{3}f_s, \quad Q^2 F_n(Q^2) = \frac{5\sqrt{2}}{3}f_n$

where decay constants are expected to be $f_n = f_{\pi}$, $fs = 1.34f_{\pi}$, and DA for the $|n\rangle$ state is close to the π^0 DA with the only difference: a factor of 3/5 coming from guark charges

Form factors for |n> and |s> states

The Q² dependencies of the measured |n> and π⁰ form factors are strongly different.
The data on the |n> form factor are described well by the model with BMS DA.

A.P.Bakulev, S.V.Mikhailov, N.G.Stefanis, Phys. Rev. D 67, 074012 light-cone sum rule method at NLO pQCD+twist-4 power corrections.

• For $|s\rangle$ all data points lie well below the pQCD prediction for the asymptotic DA.

• The result for $|s\rangle$ strongly depends on mixing parameters, for example, on a possible two-gluon contents in η' .

QFTHEP'2010,

Summary

- ♦ High accuracy measurement of CKM angle γ by Dalitz-plot analysis with low model uncertainty. Compelling evidence of direct CP violation in B[±] → D^(*)K^{(*)±} decays
- ★ Most presize measurements of the $B^0 \rightarrow \pi^- l^+ v$ and $B^0 \rightarrow \rho^- l^+ v$ branching fractions, tests of q² spectrum agreement with theoretical predictions, and new determination of $|V_{ub}|$
- ★ Study of $B \rightarrow X_{d\gamma}$ and $B \rightarrow X_{s\gamma}$ decays, new measurement of $|V_{td}/V_{ts}|$, first significant measurement of $B \rightarrow X_{d\gamma}$ nonresonant decays
- ♦ New precise measurements of the η_c and η_c(2S) masses and widths, first observation of the decay modes η_c → K⁺K⁻π⁺π⁻π⁰ and η_c(2S) → K⁺K⁻π⁺π⁻π⁰.

