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1. Introduction

As is well known, a description of quark-antiquark systems close to threshold
does not permit us to cut off the perturbative series even if the expansion
parameter, the QCD coupling as, is small

[T. Appelquist, H D. Politzer, Phys. Rev. Lett. 34 (1975) 43; Phys. Rev. D 12
(1975) 1404]. The problem is well known from QED [J. Schwinger, Particles,
sources, and fields, Chap. 5-4, 1973].

The reason is that as is not the real expansion parameter in the threshold
region — singular terms (1/v)™ are also present.
412

1— is a quark velocity, m is a quark mass.
S

n
The threshold singularities of the form (ﬁ) must be summarized.
v
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In the nonrelativistic of case for the Coulomb interaction

(1)

such a resummation is realized the well-known Gamov—Sommerfeld—Sakharov
S-factor [G. Gamov, Zeit. Phys. 51 (1928) 204; A. Sommerfeld, Atombau und
Spektrallinien. Vieweg, v. II, 1939; A.D. Sakharov, Zh. Eksp. Teor. Fiz. 18
(1948) 631]

XHI'

Shr = :
o 1 — exp(—Xar)

(an — 27”7) (2)

which is related to the wave function of the continuous spectrum at the origin
via [1(0)|?. For the case of higher / states

2
Lar = l—eXp o) H ) ] (3)
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In the relativistic theory, the nonrelativistic approximation must be modified.
The relativistic modification of the S-factor (2) in QCD in the case of two
particles of equal masses (m; = mg = m) was performed in papers: V.S. Fadin,
V.A. Khoze, Yad. Fiz. 48 (1988) 487; V.S. Fadin, V.A. Khoze, A.D. Martin,
and A. Chapovsky, Phys. Rev. D 52 (1995) 1377. It consists in the substitution
Unr — V. This factor was used for the description of effects close to the
threshold of pair production in ete™ — tt and ete™ — W TW ~ processes.

Note, the substitution & — 4as/3 must be made is applied to QCD

problems.

The same form of the S-factor as in above papers for the case of interaction

between two particles of equal masses was proposed later in paper A.H. Hoang,

Phys. Rev. D 56 (1997) 7276.
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Another form of the relativistic generalization of the S-factor also in the case
of two particles of equal masses was obtained in papers J.-H. Yoon and C.-Y.
Wong, Phys. Rev. C 61 (2000) 044905; J. Phys. G: Nucl. Part. Phys. 31
(2005) 149.

The relativistic S-factor for two particles of arbitrary masses (mi, mg) was

presented in paper A.B. Arbuzov, Nuov. Cim. A 107 (1994) 1263. This factor

was derived within the relativistic quantum mechanics on the basis of the

Schrodinger equation.
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The new approach to contracting a relativistic generalization of the S-factor
for the case of the interaction of two equal-mass particles was proposed by
Milton and Solovtsov [K.A. Milton, [.L. Solovtsov, Mod. Phys. Lett. A 16
(2001) 2213]. It proved to be convenient to use, in this case, the relativistic
quasipotential (RQP) of Logunov and Tavkhelidze [A.A. Logunov, A.N.
Tavkhelidze, Nuov. Cim. A 29 (1963) 380] in the form proposed by
Kadyshevsky [V.G. Kadyshevsky, Nucl. Phys. B 6 (1968) 125].

In Milton—Solovtsov paper, use was made of the transition of quasipotential
(QP) equation from momentum space into relativistic configurational
representation (RCR) introduced in the paper V.G. Kadyshevsky, R.M. Mir-
Kasimov, N.B. Skachkov, Nuov. Cim. A 55 (1968) 233 for the case of the
interaction of two equal-mass particles. It is important to note that one has
used the potential (1) which possesses the QCD-like behaviour [V.I. Savrin,
N.B. Skachkov, Lett. Nuov. Cim. 29 (1980) 363].

For large Q2 the potential V ~ 1/(Q?InQ?), which reproduces the principal
behavior of the QCD potential proportional to &s(Q?)/Q? with as(Q?) being

the QCD running coupling.
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Thus, a new step in applying the quasipotential approach in QCD was made
by Milton and Solovtsov. This approach leads to an expression for the

relativistic S-factor in the form

X
bd X(x) = —2 | sinhy = ——

1 —exp[-X(x)]’ sinh x V1—202’
where x is the rapidity related to the total c. m. energy of interacting particles,

Vs by 2m cosh x = +/s.

S(x) =

(4)

The application of the relativistic S-factor in the form (4) to describing a
number of features hadronic processes can be found in papers K.A. Milton,
[.L. Solovtsov, O.P. Solovtsova, Phys. Rev. D 64 (2001) 016005; 65 (2002)
076009; Mod. Phys. Lett. A 21 (2006) 1355, where a new model expression for

the Drell ratio R(s), in which threshold singularities were summarized to the

main potential contribution, was suggested.
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Ratio of hadronic to leptonic 7-decay widths in the vector channel

s \?2 2s
(1 3m) (14 am) RO

“Light” Adler function (constructed from 7-decay data)

oo

D(QQ) — _Q2 dH(_Q2) — Q2 / d R(S)

dQ? 5+ Q2)?

0

Smeared function

oo

A , R(s’
Ra(s) = ?/ds (s—s’()2)—|-A2;

0

Hadronic contribution to the anomalous magnetic moment of the muon
oo

ad 1 2 ds
a};d—g ) /—K(S)R(s)

S
0
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and to the running of the fine structure constant

[©.@)

Aafl?d( ) = —wsP / ds’ R(8/>.

3T s’ s —s

0

A common feature of all these quantities and functions is that they are defined

via the function R(s), the normalized hadronic cross-section, integrated with

some other functions.

The suggested model [K.A. Milton, [.L.. Solovtsov, O.P. Solovtsova, Mod. Phys.
Lett. A 21 (2006) 1355] allows us to describe these quantities rather well.
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The possibility of using the QP approach to define the relativistic S-factor is
based on the fact that the BS amplitude, which parameterizes the physical
quantity R(s), is taken at = = 0, therefore, in particular, at relative time 7 = 0.
The QP wave function is defined as the BS amplitude at 7 = 0, and the R-ratio
can be expressed through the QP wave function ¢¥qp(p) by using the relation

xBs(z =0) = /d9p¢QP( )

dS2, is the relativistic three-dimensional volume element in the Lobachevsky

space realized on the hyperboloid Eg — p? =m?2.

The main objective of present study is to generalize the method proposed for
getting (4) in order to derive the S/L-factor in the case of the interaction of

two relativistic particles having unequal masses.
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2. Method

We begin our consideration by presenting the completely covariant
relativistic-quasipotential equation written in the momentum space and
constructed in paper [V.G. Kadyshevsky, M.D. Mateev, R.M. Mir-Kasimov,
Yad. Fiz. 11 (1970) 692] for the relativistic-quasipotential wave function
U, /(p’) in the case of interaction between two relativistic particles that have

unequal masse (m1 ,mg; in the following ¢ = i = 1):

21 ~
AN I 1.7, /
(2Eq’ _2Ep’) v (p') = —,(2 E /ko/V (p  k ,Eq/) v (k'), (5)

m’ dk’

where dQyr =

/

k
is the relativistic three-dimensional volume element in the Lobachevsky space,

Epr=vVm'24+kK 2 m' = /m1mz; p = mimz/(m1 +ms) is the usual reduced

mass.
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Equation (5) represents a relativistic generalization of the Schrédinger
equation in the spirit of Lobachevsky geometry which is realized on the upper
half of the mass hyperboloid Ei, — k’? = m’ 2. This equation describes the

scattering on the quasipotential 1 (p’, k' Eq/) of an effective relativistic

particle having the mass m’ and the relative 3-momentum k’.

The quasipotential 1% (p’, k'; Eq/) depends parametrically on the energy E;
of the effective relativistic particle. Thereby, the effective relativistic particle of
mass m’ plays the role of a two-body system and carries the total c.m. energy
of interacting particles, /s, proportional to the energy E., [V.G. Kadyshevsky,
R.M. Mir-Kasimov, N.B. Skachkov, Sov. J. Part. Nucl. 2 (1972) 69]:

/

m’ m
Vo= V/mit +12 4 fma? 4k = T m? k= T Ey ()
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The proper Lorentz transformation means a translation in the Lobachevsky
space. The role of the plane waves corresponding to these translations are

played by the following functions:

B, — ’ —1—irm'
s<p',r>=< p =P “) , (7)

m

where the modal of the radius-vector, r, (r = rn,|n| = 1) is a relativistic
invariant [V.G. Kadyshevsky, R.M. Mir-Kasimov, N B. Skachkov, Sov. J. Part.
Nucl. 2 (1972) 69].

These functions correspond to the principal series of unitary representations of

the Lorentz group and in the nonrelativistic limit (p’ < 1, r > 1)

{(p’,r) = exp(ip’ - r).
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The functions (7) satisfy the equation in terms of finite differences

(2B, — Ho) &(p',r) =0.

~ 8 ->\l
Ho =2m/ |:COSh (i)\’—) + 2 sinh (7)\/2) —

r r or

(9)

)\/ 2 A 8
— —29’¢ exp (i)\’—)]

or

2r
is the operator of the free Hamiltonian, while Ay , is its the angular part, and
A =1/m’ is the Compton wavelength associated with the effective particle of

mass m’.
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The wave functions in momentum space and in the r representation (it is
known as the relativistic configuration representation, RCR) are related by the
equation

1

¢q’ (I’) — (271')3

/dQ p’ f(p/ ,I') \Ijq’ (p/) )
(10)

v (p') Z/drﬁ*(p’,r)wq/(r)-

For a spherically symmetric potential the application of transformations (10) to
Eq. (5) leads to the equation which is the integral form of the relativistic
Schrodinger equation in the RCR:

e / Ko (250 = 250) &P, p) / dp'€" (p,P') Ya(p) =

, (11)
= =LV (03 By) Ya(p).

where we introduced the new variables:
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q' =m'q,p’ = m'p,q =sinh(x4)ng,p = sinh(xp)ny,
Ing| =[np| =1,p=m'r,p" =m't' ,p=|p|,p" = |p'],
r= |, = |t'|,dr’ =m'dp’ ,dQ, =m'’dQp,
d
de:E—p,Eq/:m/Eq,Ep/:m’Ep,Eq:\/l—l—qQ, (12)
p
Ep =+/1+p?,V(r;Ey) =V(p/m';Ep) =m'V(p; Eq),
Ep' r)=(Bp—p-n) TP =¢(p,p),
-3
g (v) = Pmrg(p/m’) = Pq(p), Yo (p) =m' " Ty(p).
Here the right-hand side is already local in RCR and the transform of the

quasipotential, V' (p; Eq), is given in terms of the same relativistic plane waves:

1

Vip; Eq) = (2w)3/d9p£(p,p)‘7(p2;Eq) :
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By using of the expansions

&)

(&(p,p) = (2¢+ 1) pe(p, Coshxp)Pe<p p),
L=

0
b= Yot 2420 p (12

pp
(13)

p qp

and also formula [V.G. Kadyshevsky, R.M. Mir-Kasimov, N.B. Skachkov, Nuov.
Cim. A 55 (1968) 233]

(—1)£(Sinhx)£< d )e(sinpx)7

Y h —
pe(p,coshx) p(€+1) d cosh x sinh y
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Eq. (11) is transformed to the form

&)

2 a0y’ (sinh x/ )2“'2 (— 1)£+1
T p(+1)
0

(i) (i) (i) s
d cosh x/ sinh x/ dcosh x// sinh y/

2 coshxy — 2coshy’) x
( )

[©.@)

/d,p sin p' X' oo(p' ) = 2p V(p; Eq) pe(p, x)
) X '

(=)

m/ p
0

X', x are the rapidities which are related to E, , E, as E, = cosh x/,
E4 = cosh x, and the function

(_p)(ﬁ—l—l) _ iﬁ—l—l F(ip +£ + 1)
['(ip)

is the generalized power where I'(z) is the gamma-function.
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Thus, Eq. (14) differs from the corresponding equation in the case of two

particles of equal masses only by the factor 2,u/m/ turning into 1 at m1 = mo

[I.L. Solovtsov, Yu.D. Chernichenko, Proc. of the Int. Seminar Denoted to the
Memory of I. L. Solovtsov, Dubna, 15-18 Jan. 2008. JINR. Dubna. 2008.
D4-2008-65, 73].
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To solve quasipotential Eq. (14), we seek a solution with the potential (1)

in the form
oy

_ ) (£+1) .
( ”)p / d¢ e Re(¢, ), (16)

o _

where the (-integration is performed in the complex plane over a contour with

end points a— and a4 (Fig. 1):

a_=—R—i,ay =—R+1,R— 400, — +0.
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The resulting solution represented in terms of hypergeometrical function by

o p
m/ sinh x

= —No(x)(—p) M ePXTAX P (1 —iA, 1 —ip; 251 — e X)), (17)
A

The normalization constant Ng(x) in (17) can be obtained (also as in paper
[K.A. Milton, I L. Solovtsov, Mod. Phys. Lett. A 16 (2001) 2213] at £ = 0 from

the condition
sin(px — m£/2)

lim o(p,x) = ppe(p,coshx) — : : (18)
a—0 p— 00 sinh y
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The generalized power (15) in the solution (16) vanishes at p = ¢ for all
¢ # 0. Thus, the expansion for the wave function ¢, (p) contains only s-wave
(¢ = 0). Hence, we can calculate |14 (i)|?, which leads to the following
expression for the relativistic S-factor in the case of two particles of unequal

Imasses:

Suneq (X) — lim

p—1

Y

¥o0 (P ) X) ‘ _ Xuneq (X)
p

1 — exp [~ X uneq (X)] (19)
2T p

X uneq (X) -

. Y
m’ sinh x

where x is the rapidity which is related to the total c. m. energy, /s, as
(m/?/p) coshy = +/s.
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The function X yneq(x) in Eq. (19) can be expressed in terms of the

“velocity” u determined by the relation

4m'?
u = 1— 9
s — (m1 —m2)?

in the form
Tav1—u?

U

Xuneq(u) =
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The L-factor in the nonrelativistic case is defined by derivative of the order
¢ of the the wave function at » = 0. In the relativistic case, instead of the
derivative, one has to use its finite difference analog [V. G. Kadyshevsky, R. M.
Mir-Kasimov, N. B. Skachkov, Nuov. Cim. A. 1968. V. 55. P. 233; Sov. J.
Part. Nucl. 1972. V. 2. P. 69]:

a = How (i2) -] )

Thus, the relativistic L-factor is connected, as one can expect, with the RQP
partial wave function ¢y (p, x) as follows:

2

Lun = li
ealx) = i T2 (5 1)

(24 +2) (A*)ﬁ [w(p,x)]

p
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e(p,x) = Ne(x)(=p) D erpxtidxtimEil)
(24)
><F(£+1—iA,£+1—z‘p;2£+2;1—e—2><) .
The normalization constant Ny(x) in Eq. (24) can be obtained (also as in case

s-wave, £ = 0) from the condition (18).

By using Eqgs. (18), (22), (23) and (24), we finally find the following
expression for the relativistic L-factor in the case of two particles of unequal

Imasses:

L unea(x) = [1+( il )2} S unea (x) (25)

/ .
m n sinh y
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The relative relativistic velocity of interacting particles, v,

—1
s — (m1 + m2)?2 s — (m1 + ma)?
Iv] = 2 (my 2)2 A UL 2)2 , (26)
s — (m1 —ma) s — (m1 —ma)
is connected with the “velocity” u by relation

| | 2u
v| = i
1 4+ u?

(27)

From the square of relative 3-momentum k’ of an effective relativistic particle
and (27) then follows

/

k' = ()% (1) (28)

where / 2u

U, 4 = — 29
rel m ( )

is the relative velocity of an effective relativistic particle with mass m’ and the
relative 3-momentum k’ emerging instead of the system of two particles. This
result is found to be in full agrement with the physical meaning of Eq. (5),
which is a relativistic generalization of the Schrodinger equation in the spirit of

Lobachevsky geometry.
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Thus, in terms of relative velocity of an effective relativistic particle (29),

the S-factor (19) and L-factor (25) are given by expressions

!/

X uneq (t))
1 - eXp [_Xuneq(u;el)]

S uneq (Urel) = (30)

14

Daneatila) = T 1+ (=2 )

n=1
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4. Analysis relativistic threshold resummation factor and

summing up of the threshold singularities

The S-factor in Eq. (30) only formally has the same form, as the
nonrelativistic S-factor (2). However, the S-factor in Eq. (30) has an obviously
relativistic nature since as the argument r (the module of radius-vector r) in
the Coulomb potential (1) and the relativistic relative velocity of interacting
particles, v, [V G. Kadyshevsky, R M. Mir-Kasimov, N B. Skachkov, Sov. J.
Part. Nucl. 2 ( 1972) 69] both are relativistic invariants and hence the relative
velocity of an effective relativistic particle (29), according to (28), possesses this

property as well.
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The relativistic threshold resummation factors (30) and (31) has the
following important properties:

e In the nonrelativistic limit, v < 1, it reproduces the well-known

nonrelativistic result.
e In the relativistic limit, w — 1, the factors (30) and (31) go to unity.

e In the case of equal masses factor coincides with S-factor (4)
(Milton-Solovtsov).

e The case when one of the particles is at rest means that m; — oo. This give

the following of limited of expression for the “velocity”:

R 13
u 7 .
mi=oo Sy 4 k2 4 mo
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e In the ultrarelativistic limit, as it has been argued in papers [W. Lucha,

F.F. Schoberl, Phys. Rev. Lett. 64 (1990) 2733; Phys. Lett. B 387 (1996) 573],
the bound state spectrum vanishes as mass of an effective relativistic particle
m/ — 0. This feature reflects an essential difference between potential models
and quantum field theory, where an additional dimensional parameter appears

A. One can conclude that within a potential model, the S- and L-factors which

correspond to the continuous spectrum should go to unity in the limit m/ — 0.

Thus, in contrast to the nonrelativistic case, the relativistic resummation S-
and L-factors (30) and (31), reproduces both the known nonrelativistic and the

expected ultrarelativistic limits.
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Figure 2 demonstrates the difference in behavior of the nonrelativistic
S-factor (2) and the new relativistic S-factor (30) as functions of u at different
values of the parameter o (the numbers at the curves). The solid lines
correspond to the S-factor in Eq. (30) and the dashed lines to the S-factor (2)
with a substitution vy, — w. From this figure one can see that in the region of
nonrelativistic values of u, u < 0.2, where the influence of the S-factor is big,

the difference between (30) and (2) is practically absent.
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The relativistic factors could have a significant impact in interpreting
strong-interaction physics. The R(s)-function, determined by the imaginary
part of the quark current correlator, occurs as a factor in an integrand, as, for
example, for the case of inclusive 7 decay, for smearing quantities, and for the
Adler D-function. The principal contribution to the function R(s) — RS)) for

the vector current with the S-factor can be written as

0) (m1 — m2)?
- [i-

3 2 ) 2 (32)
X[U( —u?) i (m1 —mz2)

2 2s

where the total c. m. energy of interacting particles, v/s, can be expressed in
terms of the “velocity” u as s = [(m1 +m2)? — (m1 — m2)?v?]/(1 — u?). The
corresponding expression without the S-factor can be found in paper

[L.J. Reinders, H R. Rubinstein, and S. Yazaki, Phys. Rep. 1985. V. 127. P. 1].
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4
' /(m1+ m2)

Figure 3 shows the dependence of behavior of value RS? ) with the new S-factor

as a function of dimensionless variable for different values of o (the numbers at

the curves). Here a dashed line is the behaviour RS)) without S-factor (a = 0).

We see that the influence of the new S-factor is much stronger in the threshold

region and with growing energy /s weakens, and all curves approach unity.
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5. Conclusions

The new relativistic threshold resummation S- and L-factors (30) and (31)
for the interaction of two relativistic particles of arbitrary masses were
obtained. For this aim the relativistic quasipotential equation in relativistic
configuration representation [V.G. Kadyshevsky, M.D. Mateev, R.M.
Mir-Kasimov, Yad. Fiz. 11 (1970) 692] with the Coulomb potential for the
interaction of two relativistic particles of arbitrary masses was used. The
Coulomb potential only formally has the same form as the nonrelativistic

potential but differs in the relativistic configuration representation since its

behavior corresponds to the quark-antiquark potential V5 ~ as(Q?)/Q? with

the invariant charge @s(Q?) ~ 1/In Q?. So, the principal effect coming from

the running of the QCD coupling is accumulated.
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The new S/L-factor coincides in form with the nonrelativistic factor;
however, the role of the parameter of velocity is played not by the relative
velocity of interacting particles, v, but by the relative velocity (29) of an

effective relativistic particle emerging instead of the system of two particles.

The new S/ L-factor reproduces both the known nonrelativistic and expected

ultrarelativistic limits and correspond to the QCD-like Coulomb potential.

As the new relativistic resummation factors (30) and (31) were obtained
within the framework of completely covariant method, one can expect that
these factors takes into account more adequately relativistic nature of

interaction.

Thank You for Your attention !
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