LHCb: first results

V. Egorychev

on behalf of the

Collaboration

The LHCb Experiment

- An experiment dedicated at *b* physics precision measurement
 - CP-violating decays: $B_s \rightarrow J/\psi \phi$, $B \rightarrow hh$, ...
 - Rare decays: $B_s \rightarrow \mu \mu$, $B_d \rightarrow K^* \mu \mu$, ...
 - Flavour physics: open charm sector, soft QCD, quarkonium physics, ...
- Look for signs of New Physics:

• new particle to be produced and observed as real particle at LHC

• virtual new particles (in loop processes) may alter the decay rate, CP asymmetry and other observable quantities

• rare **B** decays, where penguin amplitudes play a dominate role, are excellent places to look for **NP**

b production in LHCb

Advantages of beauty physics at hadron colliders:

- high value of *bb* cross section at LHC
- access to all quasi-stable *b*-flavoured hadrons

Challenge:

- multiplicity of tracks (~30 tracks per rapidity unit)
- rate of background events: $\sigma_{inel} \sim ~100 \text{ mb}$

LHCb nominal running conditions:

• luminosity limited to ~2×10³² cm⁻² s⁻¹ by not focusing the beam as much as ATLAS and CMS

• maximize the probability of single interaction per bunch crossing

LHCb detector

Angular acceptance $15 < \theta < 300$ mrad that corresponds to $1.9 < \eta < 4.9$

LHCb trigger scheme

Level-0

'High-pt' signalsin calorimeter& muon systems

HLT1

tries to confirm the L0 decision by matching the L0 object to tracks

HLT2

Full detector information available for inclusive and exclusive selections • at design luminosity

 \rightarrow trigger optimized for B physics

• at low luminosity in Y2010 (up to few 10³¹ cm⁻²s⁻¹)

trigger being re-tuned to cope with the machine parameters of the 2010

high flexibility of the trigger allows us to manage pile-up much higher than nominal !

> For details see talk by A.Golutvin, LHCb: status and perspectives

LHCb operation

currently taken data: ~ 3.2 pb⁻¹ expect ~20-50 pb⁻¹ by end of 2010 and ~1 fb⁻¹ by end of 2011 Y2011 – e.g. results on $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow \mu^+ \mu^-$

Preliminary results

Strange production

Open and hidden charm production

Open and hidden beauty production

K_s analysis (strategy)

final result, arXiv:1008.3105v1 , submitted to Phys. Lett. B

Based on the data collected in Y2009, during the pilot run of the LHC

 K_s candidates are selected from all pairs oppositely charged tracks which form a secondary vertex downstream of the interaction point, using only the events triggered by the calorimeter

Measure the K_s production in bins of transverse momentum (p_T) and rapidity (y)

Intervals: 2.5 < y < 4.0 and $0 < p_T < 1.6$ GeV/c

For each bin, the cross section is:

K_s analysis (selection)

Two independent, complementary analyses performed:

- Downstream analysis:
 - No VELO hits used in reconstruction
 - High statistics
 - Wider mass resolution, more background
- Long track analysis:
 - Tracks require VELO hits
 - Low statistics due to Ks boost and open VELO
 - Good background rejection, good mass resolution
- No PID cuts were applied

Used the most precise measurement for each phase-space bin

K_s analysis (signal)

PDG: $497.61 \pm 0.02 \text{ MeV/c}^2$

	Downstream	Long
Yield	4801 ± 84	1182 ± 36
Mean mass (MeV/c ²)	497.12 ± 0.14	497.31 ± 0.13
Mass resolution (MeV/c ²)	9.2	4.0

K_s analysis (efficiency)

Efficiencies are estimated per bin of pT and y:

reconstruction and selection efficiency ε^{sel}

• Selection efficiency estimated in MC, includes geometric acceptance, reconstruction efficiency

- Tracking efficiency
- Primary vertexing efficiency (for the long analysis only)

Trigger efficiency $\epsilon^{trig/sel}$

•Calculate ratio of triggered, selected events and selected events in MC

Total efficiency

3-20% depending on bin (geometric acceptance)

	efficiency	syst. uncert.
Tracking	85-100%	6-17%
Primary vertex	91%	1.5%
Trigger	> 95% in every bin	2.5%

$$\sigma_{i} = \frac{1}{\varepsilon_{i}^{\text{trig/sel}} \times \varepsilon_{i}^{\text{sel}} \times L_{\text{int}}}$$

N:^{obs}

K_s analysis (luminosity)

For 2009 runs, luminosity was calculated directly from beam parameters Luminosity for N pairs of colliding bunches:

$$L = f \sum_{i=1}^{N} \frac{n_{1i}n_{2i}}{A_{eff_i}}$$

Get bunch currents from the LHC machine measurements

Use VELO to image beams by reconstructing vertices from beam-gas interactions. Gives the beam sizes, positions and angles for effective area calculation

f = 11.245 kHz is the LHC revolution frequency n_{1i} , n_{2i} – number of protons in bunch $A_{eff i}$ – effective collision area

Distributions in the horizontal and vertical planes of the reconstructed verticies

K_s analysis (luminosity)

Vertex resolutions are deconvoluted from the measured beam size

Bare beam sizes then used to calculate the effective crossing-area

example: transverse profiles measured in y for one pair of bunches

Vertex resolution Measured size Bare beam size, after de-convoluting the resolution

Luminosity delivered during 2009 and used for K_s analysis: 6.8 \pm 1 $\mu b^{\text{-1}}$

Dominated by systematic uncertainties:

Beam

intensities

12%

K_s analysis (final results)

 p_T distribution for several rapidity bins Data tend to be slightly harder than different PYTHIA tuning First *pp* results at this energy Extended the kinematic range towards high rapidity and very low p_T¹⁴

A analysis (selection)

- analysis made with long tracks only
- no particle id. used
- \bullet pointing of the Λ to the primary vertex required

A analysis (result)

Efficiency corrected ratio,

• At 0.9 TeV:

- Perugia tunes do not include diffraction
- LHCb tunes include diffraction
- Tends to be lower than PYTHIA Perugia0 tune and LHCb tune, lower with large y

At 7 TeV:

- ratio larger, ~ flat in y
- prediction in fair agreement

Results at both beam energies compared in Δy show consistency, also with other experiments

$\bar{\Lambda}/K_s$ and \bar{p}/p (preliminary result)

Baryon vs meson production ratio with *pp* collision at $\sqrt{s} = 0.9 \& 7 \text{ TeV}$

• Baryon suppression in hadronisation significantly lower than predicted

 \overline{p}/p production ratio with *pp* collision at $\sqrt{s} = 0.9 \& 7 \text{ TeV}$

Results at both beam energies compared in Δy show consistency, also with other

experiments

 J/ψ analysis (strategy)

Based on a sample collected between April and June 2010

measurement of the production cross section both for prompt J/ ψ and for J/ ψ from b

$$\sigma = \frac{N(J/\psi \rightarrow \mu\mu)}{L \times \varepsilon \times Br(J/\psi \rightarrow \mu\mu)}$$

Integrated luminosity branching fraction
J/ ψ detection efficiency

Luminosity used for the cross section measurement : (14.15 ± 1.42) nb⁻¹

Measure the J/ ψ production in bins of transverse momentum (p_T)and rapidity (y): 2.5 < y < 4.0 and 0 < p_T < 10 GeV/c

J/ψ analysis (selection)

Mass fit with Crystal Ball function and 1st order polynomial for background

 $f(x;\mu,\sigma_{\rm M},\alpha,n) = \begin{cases} \frac{\left(\frac{n}{|\alpha|}\right)^n e^{-\frac{1}{2}\alpha^2}}{\left(\frac{n}{|\alpha|} - |\alpha| - \frac{x-\mu}{\sigma_{\rm M}}\right)^n} & \frac{x-\mu}{\sigma_{\rm M}} < -|\alpha| \\ \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma_{\rm M}}\right)^2\right) & \frac{x-\mu}{\sigma_{\rm M}} > -|\alpha| \end{cases}$

Fit results (2.5<y<4, p_T <10 GeV/c): Signal = 2872 ± 73 S/B = 1.3 Mean = (3088 ± 0.4) MeV/c² σ = (15.0 ± 0.4) MeV/c² (with preliminary alignment)

 J/ψ analysis (fit in p_{τ} bins)

$p_{\rm T}({\rm GeV}/c)$	total	0 – 1	1 – 2	2 – 3	3 – 4	4 – 5
$ \begin{array}{c} N \\ B \\ \sigma_{\rm M} ({\rm MeV}/c^2) \end{array} $	2872 ± 73 2273 ± 166 15.0 ± 0.4	427 ± 31 520 ± 61 14.7 ± 1.2	823 ± 40 907 ± 79 13.1 ± 0.7	687 ± 36 568 ± 64 16.0 ± 0.9	398 ± 24 182 ± 36 15.6 ± 1.0	259 ± 18 55 ± 20 15.5 ± 1.1
$p_{\rm T}({\rm GeV}/c)$		5 – 6	6 – 7	7 – 8	8 – 9	9 - 10
$ \begin{array}{c} N \\ B \\ \sigma_{\rm M} ({\rm MeV}/c^2) \end{array} $		163 ± 13 18 ± 11 17.2 ± 1.3	74 ± 9 9 ± 8 19.9 ± 2.5	34 ± 6 4 ± 5 21.0 ± 1.3	23 ± 5 1 ± 3 20.0 ± 3.1	10 ± 3 0 ± 2 21.0 ± 26.2

20

J/ψ analysis (prompt/detached)

 $b\bar{b}$ events identified via detached vertex analysis

 t_Z distribution – pseudo-proper time

 $t_{z} = \left(z_{J/\psi} - z_{PV} \right) \frac{m_{J/\psi}}{p_{z,J/\psi}}$

combined fit to mass and pseudo propertime t_z allows separation of prompt J/ψ and $b \rightarrow J/\psi$ components

make measurement of $b \rightarrow J/\psi X$ production:

 \rightarrow important for initial tuning of b spectrum in LHCb Monte Carlo

Asymmetric distribution with clear longlived signal from b-hadron decays

Extract $f_b = \text{fraction of } J/\psi$ from b decays with an unbinned maximum likelihood fit to t_z

J/ψ analysis (prompt/detached)

- n_p , n_b , n_{bkg} : number of prompt J/ ψ , J/ ψ from b and background events
- μ,σ_1 , σ_2 , $\beta:$ mean, resolutions and fraction of the 2 gaussians for the resolution
- τ_b : b pseudo-life time
- Background from invariant mass sidebands

Statistical errors only

J/ψ analysis (efficiency)

Sample fully simulated inclusive J/ψ is used to estimate the total efficiency ϵ in each p_T bin integrated over rapidity range (2.5 < y < 4)

Efficiency includes the geometrical acceptance, the detection efficiency, the reconstruction efficiency, the selection efficiency and trigger efficiency

 ϵ depends strongly on the polarization ($\alpha = \lambda_{\theta} = 0, -1, +1$ angular distribution in the helicity frame)

Deviation of $\sigma(\alpha=+1, -1)$ wrt $\sigma(\alpha=0) \rightarrow$ systematic error

With more statistics, a direct measurement of the polarization with full angular analysis, in different reference frames and in bins of y and p_T is foreseen

J/ψ analysis (systematic uncert.)

- Systematic errors mainly coming from the discrepancy data/MC. Dominant contributions from trigger and tracking efficiencies.
- Large systematic uncertainty from luminosity
- The p_T spectrum of J/ ψ from b is not measured (low statistics) \Rightarrow additional systematic errors on σ due to ϵ dependence on p_T

Quantity	Systematic error	Comment
Trigger	2.8 % to 9.4 %	Correlated between bins
Muon identification	2.5%	Correlated between bins
Tracking efficiency	8%	Correlated between bins
Track χ^2	2%	Correlated between bins
Vertexing	1%	Correlated between bins
Bin size	1.3% to 3.9%	Bin dependent
Inter-bin cross-feed	0.5%	Correlated between bins
		(not applied to the total cross section)
Mass fit procedure	3%	Correlated between bins
Loss of events due to the radiative tail	1%	Correlated between bins
$\mathcal{B}(J/\psi \to \mu^+\mu^-)$	1%	Correlated between bins
Luminosity	10%	Correlated between bins
b momentum spectrum	4 %	Applies only to J/ψ from b cross section
b hadronization fractions	2%	Applies only to extrapolation of
		$b\bar{b}$ cross section
$\mathcal{B}(b \to J/\psi X)$	9%	Applies only to extrapolation of
		$b\bar{b}$ cross section

J/ψ analysis (preliminary results)

- $\sigma(\text{ incl. } J/\psi, p_T^{J/\psi} < 10 \text{ GeV/c}, 2.5 < y^{J/\psi} < 4) = (7.65 \pm 0.19 \pm 1.10^{+0.87} \text{ m}^{-1.27}) \ \mu b$
- $d\sigma/dp_T$ (incl. J/ ψ , 2.5 < y^{J/ ψ} < 4):

Uncertainty from polarization

Scale and shapes not well described by either CS or CO models as implemented in LHCb Pythia

Different polarization hypotheses

• σ (J/ ψ from b, p_T J/ ψ <10 GeV/c, 2.5<y J/ ψ <4) = (0.81 ± 0.06 ± 0.13) µb

 J/ψ analysis (extrapolation)

• if one extrapolate $\sigma(b \rightarrow J/\psi X) \rightarrow \sigma(b \rightarrow H_b X)$ • if one extrapolate $\sigma(b \rightarrow J/\psi X) \rightarrow \sigma(b \rightarrow H_b X)$ $cross section for producing a single b (or bar-b) flavored hadron in the pseudo-rapidity region 2 < \eta < 6$

 $\sigma(b \rightarrow H_b X, 2 < \eta(H_b) < 6) = 84.5 \pm 6.3 \pm 15.6 \ \mu b$

Extrapolation with PYTHIA 6.4, EvtGen

• assume LEP fractions for fragmentation into b-hadrons

• total bb production cross section at $\sqrt{s} = 7$ TeV

 $\sigma(pp \rightarrow bb X) = 319 \pm 24 \pm 59 \mu b$

 ψ (2S) and χ_c (signal)

Open charm production (strategy)

Based on a sample collected using the integrated luminosity of 1.81 nb⁻¹

Comparison to QCD predictions of the shapes of production cross-sections of D^0/D^0 , $D^{*\pm}$, D^{\pm} and $D^{\pm}_{\ s}$ measured at LHCb in bins of meson transverse momentum (p_T) and rapidity (y)

Signal yields has determined in bins: $(0 < p_T < 8 \text{ GeV/c})$ and (2 < y < 5)

Open charm production (signal) $D^0 \rightarrow K^- \pi^+ \text{ and } D^{*+} \rightarrow (D^0 \rightarrow K^- \pi^+) \pi^+$

Open charm production (signal) $D^+ \rightarrow K^- \pi^+ \pi^+ \text{ and } D_s \rightarrow (\phi \rightarrow K^- K^+) \pi^+$

D⁰ cross-section shape

Ration between measured and predicted charm cross-section The errors are the total uncertainties with statistical and uncorrelated systematic errors added

Theory: MC - Cacciary M., Frixione, S., Mangano, M., Nason, P. Ridolfi, G.

BAK - B.A.Kneihl, G.Kramer, I.Scheinbein, H.Spiesberger

Acceptable agreement with the theory predictions

D^{*±} cross-section shape

D⁺ cross-section shape

Ration between measured and predicted charm cross-section

D_s cross-section

Ration between measured and predicted charm cross-section

 $\begin{array}{l} \mbox{Measured cross-section ratio} \\ (D^+ + c.c. \ / \ D^+{}_s + c.c) \ . \end{array}$ The measurements are integrated over rapidity in the range 2 < y < 4.5

No p_T dependence is observed

Ratio is consistent with the expectation 3.08 ± 0.70 34

Open charm signals (2 body)

Check: measurement of D^0 lifetime

- ✓ use pure D → K π selection (S/B ~ 22)
- \checkmark proper-time distribution with simple exponential
- \checkmark use only tail, where the efficiency is constant

 $\tau(D^0) = 0.398 \pm 0.026 \ ps$

agrees with the known D^0 lifetime of $\tau(D^0) = 0.4101 \pm 0.0015$ ps

Expect several million tagged $D^0 \rightarrow KK$ in 100 pb⁻¹

 $\sigma(pp \rightarrow bbX)$ using $B \rightarrow D^0 X \mu v$

• Strategy

measure right-sign D⁰ μ ⁻ pairs using tracks not pointing at primary vertex, but which form a common vertex (use D⁰ \rightarrow K⁻ π ⁺ decays)

From PDG

- b in B \pm /B0/Bs0/b-baryon admixture \rightarrow D⁰ l vX
- BR = $6.82\% \pm 0.35\%$
- production fractions from Heavy Flavor Averaging Group
- Br(D⁰ \rightarrow K π) = (3.91 ± 0.01)%

the two types of D^0 produced are "Prompt" (directly in a pp collision or from decay of heavier states) and D^0 's from b-decays. They can be separated statistically by examining the impact parameter (IP) with respect to the primary vertex

$\sigma(pp \rightarrow bbX)$ using $B \rightarrow D^0 X \mu v$

if D⁰ comes from a b-decay, then K⁻ π + has a large impact parameter (IP) with respect to the pp vertex

IP distribution used to separate

Prompt and D⁰'s from b-decays

 $\sigma(pp \rightarrow bbX)$ using $B \rightarrow D^0 X \mu v$

• combine M(K π) window with large IP(D⁰ μ) requirement

•yield from unbinned log-likelihood fit simultaneously to $M(K\pi)$ and ln(IP)

$$\sigma(pp \rightarrow bbX) \text{ using } B \rightarrow D^0 X \mu v$$

$$\sigma = \frac{N(D^0 \mu^- + D^0 \mu^+)}{L \times \varepsilon(acc, trigger, reco) \times 2}$$

$d\sigma/d\eta$ in 4 bins of pseudo-rapidity in the LHCb acceptance 2<\eta<6

- η = -ln(θ /2), with θ determined from the pp and D⁰ μ vertices
- dominating systematic uncertainties from luminosity and tracking
- extrapolate to $\sigma(pp \rightarrow H_bX)$ (PYTHIA 6.4, LEP b-hadrons production fractions)

 $\sigma(pp \rightarrow H_b X, 2 < \eta(H_b) < 6) =$ 74.9 ± 5.3 ± 12.9 µb

total bb production cross section at $\sqrt{s} = 7$ TeV (extrap. to full η) $\sigma(pp \rightarrow bbX) = 282 \pm 20 \pm 49$ µb

LHCb: averaging b production results (preliminary)

All measurements of $\sigma(pp \rightarrow H_b X, 2 < \eta(H_b) < 6)$ are compatible:

- determine weighted average of J/ψ and $D^0\mu\nu X$ results
- use MC and Pythia to extrapolate to 4π

η	LHCb preliminary [µb]	Theory I	Theory II
2-6	$77.4 \pm 4.0 \pm 11.4$	89	70
all	292±15±43	332	254

Theory I: Nason, Dawson, Ellis Theory II: Nason, Frixion, Mangano, Ridolfi

B-meson decays

analysis of fully reconstructed B-decays advancing by the day

integrated luminosity growing very fastevent yields in line with MC expectationsgood mass resolution

B-meson decays

Fully reconstructed B

 $\Upsilon \rightarrow \mu^+ \mu^-$

$$\begin{split} M(1S) &= 9452.2\text{+-} \ 2.9 \ MeV/c^2 \\ \sigma &= 50.0 \ \text{+-} \ 8.6 \ MeV/c^2 \\ N &= 596 \ \text{+-} \ 32 \end{split}$$

 $M(2S) = 10015.1 + 2.9 \text{ MeV/c}^2$ $\sigma = 52.9 + 9.1 \text{ MeV/c}^2$ N = 138.0 + 20.6

$$\begin{split} M(3S) &= 10347.4 + -2.9 \ MeV/c^2 \\ \sigma &= 54.7 + -9.4 \ MeV/c^2 \\ N &= 61 + -17 \end{split}$$

Conclusions

- LHCb experiment is routinely collected data
- First results show the excellent quality of the data collected so far:
 - Charm resonances and B mesons have been reconstructed
 - First measurements of production cross-sections at $\sqrt{s} = 7$ TeV for open charm, J/ ψ and *bb*
 - Prompt K_s production in *pp* collisions at $\sqrt{s} = 0.9$ TeV
 - Preliminary results in 2010 for ratios of V0& protons

• Looking forward to analyze full 2010/2011 LHC data set