# Status of GRACE Development

Y.Kurihara(KEK) GRACE-Group

11/Sep./2010 @QFTHEP2010 Golitsyno, Moscow, Russia

# Outline

- Introduction
- what is GRACE ?
- GRACE for SUSY Processes
- acd event-generators for LHC
- summary

## Introduction

- Automatic Calculation Systems
  - This year is 20's Anniversary!
  - GRACE meets CompHEP at AIHENP1990@Lyon
  - Battle Field of "LEP-II War" @1995
  - Tree to Loop
  - Leptons to Quarks
  - SM to BSM

# No ACS, No Physics!

# What is GRACE ?

# What is GRACE?: Structure



# What is GRACE?: Model File 1

```
% gauge bosons
Particle=W-plus["W+"]; Antiparticle=W-minus["W-"];
     Gname = \{ W, W^{+}, W^{-} \};
     PType=Vector; Charge=1; Color=1; Mass=amw; Width=agw;
    PCode=2; KFCode=24; Gauge="wb";
Pend:
8
Particle=Z["Z0"];
                      Antiparticle=Particle;
    Gname = \{ "Z^0" \};
     PType=Vector; Charge=0; Color=1; Mass=amz; Width=agz;
    PCode=4; KFCode=23; Gauge="zb";
Pend:
&
Particle=photon["A"]; Antiparticle=Particle;
     Gname={"\qamma"};
     PType=Vector; Charge=0; Color=1; Mass=ama; Width=0;
     PCode=1; Massless; KFCode=22; Gauge="ab";
Pend;
&
Particle=gluon["g"]; Antiparticle=Particle;
    Gname={"g"};
     PType=Vector; Charge=0; Color=8; Mass=amg; Width=0;
     PCode=8; Massless; KFCode=21;
     Gauge="gl"; PSelect="gluon";
Pend;
```

# What is GRACE?: Model File 2

```
Vertex=\{u-bar, u, Z\}; ELWK=1; FName=czuu(2,1/3);
         Vend:
Vertex=\{c-bar, c, Z\}; ELWK=1; FName=czuu(2,2/3);
         Vend:
Vertex=\{t-bar, t, Z\}; ELWK=1; FName=czuu(2,3/3);
         Vend:
Vertex=\{d-bar, d, Z\}; ELWK=1; FName=czdd(2,1/3);
        Vend:
Vertex=\{s-bar, s, Z\}; ELWK=1; FName=czdd(2,2/3);
         Vend:
Vertex=\{b-bar, b, Z\}; ELWK=1; FName=czdd(2,3/3);
         Vend:
% FFV (FFq)
Vertex={u-bar, u, gluon}; QCD=1; FName=cguu(2,1/3);
         FType="V"; Vend;
Vertex={d-bar, d, gluon}; QCD=1; FName=cgdd(2,1/3);
         FType="V"; Vend;
Vertex={c-bar, c, gluon}; QCD=1; FName=cguu(2,2/3);
         FType="V"; Vend;
Vertex={s-bar, s, gluon}; QCD=1; FName=cgdd(2,2/3);
         FType="V"; Vend;
Vertex={b-bar, b, gluon}; QCD=1; FName=cguu(2,3/3);
         FType="V"; Vend;
Vertex={t-bar, t, gluon}; QCD=1; FName=cgdd(2,3/3);
         FType="V"; Vend;
```

# What is GRACE?: Input File

Process; /loop order \_\_\_\_tree order ELWK= $\{2, 2\}$ ; Order of  $\alpha$ QCD={3,1}; Initial={u u-bar}; \_\_\_\_\_Order of α Initial={u u-bar}; \_\_\_\_\_\_initial.state Final ={gluon, w-plus, w-minus}; Expand=Yes; Block=No; AnyCT=Yes; final state particles Kinem="2301"; Pend; kinematics number



subroutine atrg2 implicit real\*8(a-h,o-z)

end.

# What is GRACE?

#### FORTRANCode

```
include 'indirl.h'
    include 'inclk.h'
      include 'indirph'
      common /anwork/cftrl3g,av4,av5,extrl3g,pttrl3g
      common /amwori/lt4,lt5
      880 (880) + 32 (32) bytes used
                 1t4(0:3), 1t5(0:3)
      integer
      real*8
                 extr13g(2),pttr13g(4,3)
      complex*16 cftr13g(2.4)
      complex*16 av4(lextrn*lintrn*lepexa)
      complex*16 av5(lintrn*lextrn*lepexv)
      complex*16 atmp
      real*8
                 cwgt(0:1)
* Denominators of propagators
      a prop = 1.0d0
      call snprpd(pphase, aprop, vntr13,
     50
            amug**2,0.0d0)
* Internal momenta
      call smintf(amug,pftrl3,vntrl3,extrl3g,pttrl3g,cftrl3g)
* Vertices (6)
      call SMffv(lextrn,lintrn,lepexa,extr2g,extr13g,amug,amug,cgug,
                 cftr2q, cftr13q, pttr2q, pttr13q, eqtr14e, 1t4, av4)
     5
      call Smffv(lintrn,lextrn,lepexv,extrl3g,extr4t,amug,amdg,cwug,
                 cftrl3g.cftr4t.pttrl3g.pttr4t.egtr9b.lt5.av5)
     50
      call smconf(lt4,lt5,2,1,extrl3g,av4,av5,lt,av)
      sym - - 1.0d0
                    - sym/aprop
      aprop
      indexq(1) = 1
      indexq(2) = 4
      indexg(3) = 2
      indexg(4) = 3
      if(jcpol(4).ne.0) call smcpol(2, lt, av)
      call atrmpord(lt, av, indexg, agcwrk)
      ancp(jgraph) = 0.0d0
      nbase - 2
      do 500 ih = 0 , ltrag_1

    aqcwrk(ih)*aprop

         atmp
         agc(ih, 0) = agc(ih, 0) + (-1/6.d0)*atmp
         age(ih,1) = age(ih,1) + (1/2.d0)*atmp
         ancp(jgraph) = ancp(jgraph) + atmp*conjg(atmp)
 500 continue
      return
```

# What is GRACE?: Integration

Date: 10/ 9/10 01:24 Convergency Behavior for the Grid Optimization Step

| <- Result of<br>IT Eff R_Neg                         | each iteration -><br>Estimate Acc %                                      | <- Cumulative Result<br>Estimate(+- Error )order                                                             | -> < CPU time ><br>Acc % ( H: M: Sec )                                                                              |
|------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2.775E+01 3.440<br>2.975E+01 1.021<br>2.939E+01 0.278<br>2.934E+01 0.134 | 2.775262(+-0.095475)E 01<br>2.956613(+-0.028933)E 01<br>2.939853(+-0.007866)E 01<br>2.935474(+-0.003522)E 01 | 3.440       0: 0:30.33         0.979       0: 1: 0.51         0.268       0: 1:30.66         0.120       0: 2: 0.77 |

Date: 10/ 9/10 01:24

Convergency Behavior for the Integration Step

| <- Result of                                         | each iteration -> | <- Cumulative Result     | -> < CPU time >     |
|------------------------------------------------------|-------------------|--------------------------|---------------------|
| IT Eff R_Neg                                         | Estimate Acc %    | Estimate(+- Error )order | Acc % ( H: M: Sec ) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2.939E+01 0.115   | 2.939291(+-0.003370)E 01 | 0.115 0: 2:30.75    |
|                                                      | 2.941E+01 0.111   | 2.940266(+-0.002348)E 01 | 0.080 0: 3: 0.92    |
|                                                      | 2.941E+01 0.109   | 2.940542(+-0.001896)E 01 | 0.064 0: 3:31.04    |
|                                                      | 2.936E+01 0.104   | 2.939294(+-0.001611)E 01 | 0.055 0: 4: 1.32    |
| 5 100 0.00                                           | 2.9405+01 0.112   | 2.939437(+-0.001447)E 01 | 0.049 0. 4.51.54    |

Integration Result (pb)

Accuracy (%)

# What is GRACE?: Distributions



# What is GRACE?: Event Generation

- Numerical Integration by BASES
  - Probability Density Matrix

Event Generation
W/unit Weight
LHAccord Interface



# GRACE for SUSY

# GRACE for SUSY: Gauge Fixing

• Full Lagrangean of MSSM

• 
$$\mathscr{L} = \mathscr{L}_{MSSM} + \mathscr{L}_{GF-V} + \mathscr{L}_{GF-S} + \mathscr{L}_{CT}$$

Non-linear Gauge Fixing : Gauge bosons

$$\mathscr{L}_{GF-V} = -|F_{W}|^{2}/\xi_{W} + F_{Z}^{2}/(2\xi_{Z}) + F_{\gamma}^{2}/(2\xi_{\gamma})$$

$$F_{W^{\pm}} = (\partial_{\mu} \pm ie\widetilde{\alpha}A_{\mu} \pm igc_{W}\widetilde{\beta}Z_{\mu})W^{\pm\mu}$$

$$\pm i\xi_{W}\frac{g}{2}(v + \widetilde{\delta}_{h}h^{0} + \widetilde{\delta}_{H}H^{0} \pm i\widetilde{\kappa}G^{0})G^{\pm}$$

$$F_{Z} = \partial_{\mu}Z^{\mu} + \xi_{Z}\frac{g_{Z}}{2}(v + \widetilde{\epsilon}_{h}h^{0} + \widetilde{\epsilon}_{H}H^{0})G^{0}$$

$$F_{\gamma} = \partial_{\mu}A^{\mu}$$

J.Fujimoto et al., Phys.Rev.D75, 113002('07)

# GRACE for SUSY: Gauge Fixing

• Non-linear Gauge Fixing : S-leptons

• 
$$\mathscr{L}_{GF-S} =$$
  
+ $i \underbrace{\varsigma}_{ij} \left\{ \widetilde{c}_{ij}^{du} \left( \widetilde{d}_{i}^{*} \widetilde{u}_{j} \right) + \widetilde{c}_{ij}^{sc} \left( \widetilde{s}_{i}^{*} \widetilde{c}_{j} \right) + \widetilde{c}_{ij}^{bt} \left( \widetilde{b}_{i}^{*} \widetilde{t}_{j} \right) \right\} + \sum_{i} \left\{ \widetilde{c}_{i}^{e} \left( \widetilde{e}_{i}^{*} \widetilde{v}_{e} \right) + \widetilde{c}_{i}^{\mu} \left( \widetilde{\mu}_{i}^{*} \widetilde{v}_{\mu} \right) + \widetilde{c}_{i}^{\tau} \left( \widetilde{\tau}_{i}^{*} \widetilde{v}_{\tau} \right) \right\} \right]$   
- $i \int_{\mathscr{I}} g \left[ \sum_{ij} \left\{ \widetilde{c}_{ij}^{ud} \left( \widetilde{u}_{i}^{*} \widetilde{d}_{j} \right) + \widetilde{c}_{ij}^{cs} \left( \widetilde{c}_{i}^{*} \widetilde{s}_{j} \right) + \widetilde{c}_{ij}^{tb} \left( \widetilde{t}_{i}^{*} \widetilde{b}_{j} \right) \right\} + \sum_{i} \left\{ \widetilde{c}_{i}^{e} \left( \widetilde{v}_{e}^{*} \widetilde{e}_{i} \right) + \widetilde{c}_{i}^{\mu} \left( \widetilde{v}_{\mu}^{*} \widetilde{\mu}_{i} \right) + \widetilde{c}_{i}^{\tau} \left( \widetilde{v}_{\tau}^{*} \widetilde{\tau}_{i} \right) \right\} \right]$ 

$$+ \widetilde{g}_{Z} \left[ \sum_{ij} \left\{ \widetilde{c}_{ij}^{uu} \left( \widetilde{u}_{i}^{*} \widetilde{u}_{j} \right) + \widetilde{c}_{ij}^{dd} \left( \widetilde{d}_{i}^{*} \widetilde{d}_{j} \right) + \widetilde{c}_{ij}^{cc} \left( \widetilde{c}_{i}^{*} \widetilde{c}_{j} \right) + \widetilde{c}_{ij}^{ss} \left( \widetilde{s}_{i}^{*} \widetilde{s}_{j} \right) + \widetilde{c}_{ij}^{tt} \left( \widetilde{t}_{i}^{*} \widetilde{t}_{j} \right) + \widetilde{c}_{ij}^{bb} \left( \widetilde{b}_{i}^{*} \widetilde{b}_{j} \right) \right\} \right] \\ + \widetilde{c}^{\nu_{e}\nu_{e}} \left( \widetilde{\nu}_{e}^{*} \widetilde{\nu}_{e} \right) + \widetilde{c}^{\nu_{\mu}\nu_{\mu}} \left( \widetilde{\nu}_{\mu}^{*} \widetilde{\nu}_{\mu} \right) + \widetilde{c}^{\nu_{\tau}\nu_{\tau}} \left( \widetilde{\nu}_{\tau}^{*} \widetilde{\nu}_{\tau} \right) + \sum_{ij} \left\{ \widetilde{c}_{ij}^{ee} \left( \widetilde{e}_{i}^{*} \widetilde{e}_{j} \right) + \widetilde{c}_{ij}^{\mu\mu} \left( \widetilde{\mu}_{i}^{*} \widetilde{\mu}_{j} \right) + \widetilde{c}_{ij}^{\tau\tau} \left( \widetilde{\tau}_{i}^{*} \widetilde{\tau}_{j} \right) \right\} \right]$$

### GRACE for SUSY: Renomarization

Electro-weak corrections

On-Mass-Shellscheme

 $\rightarrow$  mass shifts for  $h^0$ ,  $H^{\pm}$ ,  $\chi^0_{2,3,4}$  only

Sfermion sector

 $\rightarrow \text{residue conditions: } \delta Z_{\tilde{f}\tilde{f}} = \frac{\partial}{\partial q^2} \Sigma(q^2) \Big|_{q^2 \rightarrow m_{\tilde{f}}^2} \equiv \Sigma'(m_{\tilde{f}}^2) \\ \widetilde{f}_1 - \widetilde{f}_2 \text{ decoupling conditions:} \\ \frac{1}{2} \delta Z_{\tilde{f}_i \tilde{f}_j} = -\frac{\Sigma_{\tilde{f}_i \tilde{f}_j}(m_{\tilde{f}_j}^2)}{m_{\tilde{f}_i}^2 - m_{\tilde{f}_j}^2}, \quad i \neq j \\ \text{external wave function: } \delta Z_{\tilde{t}_2 \tilde{t}_2}^{ext} \neq 0, \quad \delta Z_{\tilde{b}_2 \tilde{b}_2}^{ext} \neq 0$ 

## GRACE for SUSY: Renomarization

QCD corrections

∗ light quarks(u,d,c,s) and gluon
 ⇒ DR-bar scheme
 → PDF, parton-shower, …

\* massive quarks(b,t), squark and gluino ⇒On-Mass-Shell scheme

\* IR regularization...  $1/\overline{\varepsilon}$  (Dimensional)

$$d = 4 - 2\varepsilon = 4 + 2\overline{\varepsilon}$$

Non-linear Gauge Check (One Phase Point)

• Ex. for 
$$\widetilde{t_1} \rightarrow b \widetilde{\chi}_1^+$$
 One-Loop

• NLG Parameters:  $(\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\delta}_h, \widetilde{\delta}_H, \widetilde{\kappa}, \widetilde{\varepsilon}_h, \widetilde{\varepsilon}_H)$ 

#### Case 1 : (0,0,0,0,0,0,0)

**Ans** = 0.15117115752797127186610833503954323

Case 2 : (1000,2000,3000,4000,5000,6000,7000) **Ans = 0.15117115752797127186610833480863836** Unit(GeV)

• Ex. for  $\tilde{t_1} \rightarrow b \tilde{\chi}_1^+$  One-Loop (One Phase Point)

UV-Cancellation Check

Case 1 : (Cuv=1/ $\epsilon$ =0)

Ans = 0.15117115752797127186610833503954323 Case 2 : (Cuv=1000)

Ans = 0.15117115752797127186596180279397801

IR-Cancellation Check

Case 1 : ( $\lambda = 10^{-24}$ )

Ans = **0.15117115752797127186610833503954323** Case 2 :  $(\lambda = 10^{-27})$ 

 $Ans = \mathbf{0.15117115752797127186610833519983020}$ 

• Ex. for  $\tilde{t_1} \rightarrow b \tilde{\chi}_1^+$  One-Loop : (After Integration) • Electro-weak correction

| Cuv        | 0                 | 1000              | 0        | 0                 |
|------------|-------------------|-------------------|----------|-------------------|
| λ (GeV)    | 10 <sup>-24</sup> | 10 <sup>-24</sup> | 10-27    | 10 <sup>-24</sup> |
| kc (GeV)   | <b>10</b> -3      | 10-3              | 10-3     | 10-5              |
| loop       | -0.06256          | -0.06256          | -0.09364 | -0.06256          |
| soft       | 0.21373           | 0.21373           | 0.24481  | 0.19301           |
| hard       | 0.04849           | 0.04849           | 0.04849  | 0.06921           |
| sum        | 0.19966           | 0.19966           | 0.19966  | 0.19966           |
| correction | 13.9%             | 13.9%             | 13.9%    | 13.9%             |

#### • Ex. for $\tilde{t_1} \rightarrow b \tilde{\chi}_1^+$ One-Loop : (After Integration) • QCD Correction

| Cuv        | 0      |        | 0      |
|------------|--------|--------|--------|
| Cir        | 0      | 0      | (1)    |
| loop       | -1.254 | -1.254 | -1.479 |
| soft       | -3.752 | -3.752 | -3.527 |
| hard       | 4.905  | 4.905  | 4.905  |
| sum        | -0.100 | -0.100 | -0.100 |
| correction | -7.1%  | -7.1%  | -7.1%  |

| Summary of stop1 decay                                                         |         |                  |                                                                      |                                              |
|--------------------------------------------------------------------------------|---------|------------------|----------------------------------------------------------------------|----------------------------------------------|
| Table4                                                                         | tree    |                  | ay<br>δΓ/tree(QCD)                                                   | unit : [GeV]                                 |
|                                                                                |         | δΓ <b>(ELWK)</b> | δΓ/tree(ELWK)                                                        | total                                        |
| $\widetilde{t}_1 \rightarrow b \widetilde{\chi}_1^+$                           | 1.43267 | -0.104<br>0.200  | -7.1%<br>13.9%                                                       | 6.8%                                         |
| $\widetilde{t}_1 \rightarrow t \widetilde{\chi}_1^0$                           | 0.22067 | 0.00461 0.01681  | 2.1%<br>7.6%                                                         | 9.7%                                         |
| BR<br>$b \tilde{\chi}_{1}^{+}$<br>$b \tilde{\chi}_{1}^{+}$<br>86.3 1-loop<br>% |         | .3%              | total decay width                                                    |                                              |
|                                                                                |         | tree             | Γ(tree) : 1.<br>Γ(QCD) : 1.<br>Γ(Electroweak) : 1.<br>Γ(1-loop) : 1. | 65 [GeV]<br>55 [GeV]<br>87 [GeV]<br>77 [GeV] |
|                                                                                | 00 70/  |                  |                                                                      | <b>F</b> 1 <b>1 1 1 1 2</b>                  |









 $m_{\widetilde{t_1}}$  (GeV)

T. Koike, et al, [JPS Meeting 2010/09/12]



# GRACE for LHC

- W+jets(upto3jets) with the subsequent W decay
- Z + jets (up to 2 jets) with the subsequent Z decay
- Four bottom guarks
- top-guark pair with the subsequent decay
- of di-boson (WW, WZ and ZZ) with the subsequent W/Z decay



New features of GR@PPA 2.8

- ME-PS matching in the generation of *W*, *Z*, *W*+*W*,
  - ZW, ZZ production processes at hadron collisions
    - LLL subtraction & custom LLPS
    - Forward evolution PS in the initial state (QCDPS)
    - Backwardevolution PS(QCDPSb) available as well
    - Final-state PS(QCDPSf) also implemented as well as initial-state radiations.

- Additional features
  - W and Z decays in the matrix elements
  - Exact spin, phase-space and off-shell effects at the tree level
  - PDG values for the decay widths and branching ratios of W and Z
  - Generated events can be passed to PYTHIA to proceed the simulation : hadronization and decays
  - Still at LO: Please wait GR@PPA 3.0

It can be downloaded from: http://atlas.kek.jp/physics/nlo-wg/grappa.html

#### Z-boson production



The DO data and the simulation are normalized to the CDF cross section.

#### Di-boson production@LHC: GR@PPA v.s. MC@NLO



Plots: GR@PPA 2.8 + PYTHIA 6.419 Solid lines: MC@NLO3.31+Herwig6.510.3+Jimmy4.31.3

#### **GRACE** for LHC: NLO Generator ME⇔PS Matching@NLO · Process : 10<sup>3</sup> dσ∕dE₁ (pb/GeV) :[μ μ g] 🛇 PDF $uu \rightarrow \mu^+ \mu^- (+gluon)$ 10<sup>2</sup> (w/Double Counting) in pp collision :[μμg(NLO)]⊗PS 10 Cuts: $\sqrt{s_{uu}} > 40 \text{GeV}$ $k_T^g > 1 \text{ GeV}$ 10<sup>-1</sup> 10<sup>-2</sup> :[μ μ (t+v+c)]/PS O. 10 20 30 40 50 $E^{\mu\mu}_{\tau}$ (GeV) :[μμg-LL]⊗PS

Transverse momentum distribution of W-jet



Transverse momentum distribution of  $\gamma \gamma$ 



#### **Direct Processes**







Lowest Process

Loop Correction

**Real Radiation** 

Diphox

- T.Binoth, J.Ph.Guillet, E.Pilon, M.Werlen
- Eur.Phys.J.C16,311(2000)

#### **Fragmentation Processes**





single fragmentation

double fragmentation

#### • DIPHOX

- Fragmentation Function
- Inclusive Jet -> No Event-Generation
- •GR@PPA
  - Parton Shower (QCD/QED)
  - · Event-Generation







Q2=(50 GeV)~(5 $\Lambda_{QCD}$ ), Egluon = 100GeV



jet pT

y energy

Q2=(50 GeV)~(5 $\Lambda_{QCD}$ ), Equark = 100GeV



# Summary

- GRACE is a Automatic Generator of Generators
- QED, Electro-weak SM, QCD, MSSM @ 1-Loop order
- GR@PPA**2.8** 
  - Full Exclusive unweighted Hadron Event Generator w/ ME⇔PS Matching
  - 2.8→3.0:NLO+QECDPS Full Exclusive unweighted Event Generator