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The structure of propagators is considered in the framework of the convolution representation. Spectral function

was found for a special case when the propagator of scalar unstable particle has Breight-Wigner form. The ex-

pressions for the dressed propagators of unstable vector and spinor fields are derived in an analytical way for this

case.

1 Introduction

Standard definitions of the mass and width of unstable particles (UP) are closely connected with the struc-
ture of the dressed propagator. Traditional way to construct the dressed propagator of UP is Dyson sum-
mation. This procedure runs into some problems which are widely discussed in the literature. One of such
problems follows from the d’Alembert convergence criterion |z| < 1 of the ceries 1/(1− z) = 1+ z+ z2 + ...,
where z = Π(1)(q)/(q2−M2

0) and Π(1)(q) is the one-particle–irreducible self-energy. The variable z should
be correctly redefined before summation, that is we have to perform the renormalization of the Π(1)(q) at
Lagrangian level. This procedure must be consistent with the infinite Dyson summation and we can not
use it after the redefinition at |z| > 1. There are, also, the difficulties in the scheme of sequential fixed-order
calculations which exhibit themselves in the violation of the gauge invariance. Moreover, using differ-
ent decompositions of self-energy tensor in the Dyson summation leads to different expressions for vector
dressed propagator. Then, the renormalization procedure is connected with the truncation of a Laurent
series expansion at the resonance range. So, the renormalized propagator is an approximation of the full
one which corresponds to exact two-point function.

The peculiarities of Dyson summation lead to the lack of uniqueness in constructing the propagators of
unstable particles. There are several different expressions for the numerator of vector boson propagator
gµν − qµqν/ f (q, M, Γ), which are exploited in practical calculations. It is known that the commonly used
Breit-Wigner (BW) expressions for bosonic and fermionic propagators do not sutisfy the electromagnetic
Ward identity [1]. It was shown in Ref. [2, 3], that the modified BW propagators

DV
µν(q

2) =
−gµν + qµqν/(M2

V − iMVΓV)

q2 − (M2
V − iMVΓV)

; DF(q̂) =
q̂ + MF − iΓF/2

q2 − (MF − iΓF/2)2 . (1)

sutisfy the electromagnetic Ward identity which provides the gauge invariant description of the processes
with UP participation. It was also noted in Ref. [2], that in this case we have to make such modification not
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only in the qµqν term of the propagator, but in the vertexes too. Thus, we get the so-called complex-mass
definition which was developed in the frame-work of the complex-mass scheme (CMS) [4–6].

An alternative approach is based on the spectral representation of the propagator of UP [7–14]. It treats UP
as a non-perturbative state or effective field (asymptotic free field [13,14]). For the first time, the hypothesis
of continuous (smeared) mass of UP was suggested by Matthews and Salam [10]. In the Refs. [13,14], UP is
described by the so-called asymptotic free field as the state with indefinite (not fixed) mass. The hypothesis
of continuous (smeared, indefinite) mass of UP was developed in a series of works, where quantum field
model of UP was represented (see, for instance, review articles [15, 16] and references therein).

In this work, we consider the structure of the propagators in the framework of the spectral-representation
approach and with account of the Dyson procedure. The paper is organized as follows. In the second
section we present the principal elements of the approach under consideration and analyze the general
structure of the scalar propagator. The expressions for vector and fermionic propagators are derived in the
third and fourth sections respectively. Some conclusions concerning the physical status of the results are
made in the last section.

2 Propagator of scalar unstable particle

Propagator of scalar UP can be represented in the following convolution form:

D(q) = i
∞∫

s0

ρ(m2) dm2

q2 −m2 + iε
= i

∞∫
s0

D0(q2, m2)ρ(m2)dm2, (2)

where ρ(m2) is spectral function of the parameter m2, D0(q2, m2) is “bare” scalar propagator and the limit
of integration s0 will be determined further. In the framework of the asymptotic free field approaches
(indefinite mass) [13, 14] or the model with continuous mass [15, 16] the expression (2) can be derived
directly. In these cases, the field function of scalar UP can be represented in the following convolution
form:

φ(x) =
1

(2π)3/2

∫ ∫
φ(p, m2)eipxdp ω(m2) dm2, (3)

where p = (p, p0), φ(p, m2) is defined in standard way at fixed mass p2 = m2 and ω(m2) is model weight
function. Note, the value m is not a conventional observed mass of UP. It is continuous mass parameter
which cuts out three-dimentional surface in the four momentum space according to equality p2 = m2. The
canonical commutation relations contain an additional delta-function δ(m2 −m′2). Starting from the stan-
dard definition of the Green’s function D(q) = i

∫
dx exp (−iqx) 〈0|T̂φ(x)φ(0)|0〉, where φ(x) is defined by

(3), by straightforward calculations we get convolution representation of the model propagator (2), where
ρ(m2) = |ω(m2)|2. The principal problem of the approach under consideration is to define spectral function
ρ(m2). This definition can be got with the help of the known integration rule

b∫
a

f (x) dx
x± iε

= ∓iπ f (0) + P
b∫

a

f (x)
x

dx, (4)

which follows from the Sokhotski-Plemelj formula when x = 0 ∈ (a, b). In Eq. (4) P
∫

stand for the
principal part of the integral.
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Here, we consider in detail the special case of the spectral function for bosonic UP in the assumption that
the scalar propagator has a traditional BW form:

DBW(q) =
1

q2 −M2 + iMΓ
. (5)

To define ρ(m2) we rewrite Eq.(2) with the help of the integration rule (4). Then, Eq.(2) takes the form:

D(q) = −iπρ(q) + P
∫

ρ(m2)

q2 −m2 dm2 (6)

The condition D(q) = DBW(q) leads to a following equalities:

=D(q) = − πρ(q2) =
−MΓ

[q2 −M2]2 + M2Γ2 ;

<D(q) = P
∫

ρ(m2) dm2

q2 −m2 =
q2 −M2

[q2 −M2]2 + M2Γ2 , (7)

where the first equalities follow from (6) and the second ones from (5). From the upper equality in (7) it
follows

ρ(m2) =
1
π

MΓ
[m2 −M2]2 + M2Γ2 . (8)

Thus, the condition =D(q) = =DBW(q) uniquely defines the form of the function ρ(m2) for the case under
consideration (q-independent M and Γ). In Ref. [12] the definition of the function ρ(m2) was fulfilled in close
analogy with above consideration and was finished at this stage. Here, we take into consideration the lower
equality of (7) which gives an additional information about the limits of integration. By straightforward
calculation we check that the lower equality of Eq.(7) and normalization of the function (8) are realized
exactly when (−∞ < m2 < ∞). So, the parameter m2 can take a negative value and we have to consider an
analytic continuation of the traditional spectral approach.

Now, let us consider the theoretical status of the result and possible consequences of the presence of nega-
tive mass parameter m2 < 0 in the integral representations (2) and (3). The form of the spectral function is
strictly defined, that is, completely motivated by the choice of the dressed scalar propagator as input condi-
tion. It should be noted that appearance of the negative component can be caused by the choice of the BW
approximation. However, we do not know correct (exact) expression for the input propagator and evalu-
ate the error of approximation. In the framework of the approaches with indefinite (continuous, smeared)
mass the negative component m2 < 0 leads to the states with imaginary mass parameter which usually are
interpreted as tachyon states. The problem of the existence of tachyons is under considerable discussion
in the last decades. The main attention is paid to the principal problems, such as a violation of causality,
tachyon vacuum, and radiation instability. It should be noted, that these problems relate to UP as an ob-
servable object with fixed imaginary mass. In the framework of the effective model [16] UP is described by
the positive mass square M2 and we have no the tachyons in the set of physical states. Now we evaluate the
contribution of the negative component. The spectral function ρ(m2) is normalized and can be interpreted
as the probability density of parameter m2. So, the probability of the negative component is:

P(m2 < 0) =
0∫

−∞

ρ(m2; M, Γ) dm2 ≈ Γ
πM

, (
Γ
M

<< 1) (9)

From (9) it follows that this probability is proportional to the factor Γ/M which defines the finite-width
effects in the processes with UP’s participation. This fact can lead to an interesting possible conclusions:
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tachyon instability is intrinsic property of UP; it can be interpreted as the cause of unstable particle decay.
Now, we evaluate the relative contribution of the negative component to the full propagator which we
define as the relation:

ε(q2) =

∫ 0
−∞ D0(q2, m2) ρ(m2) dm2∫ +∞
−∞ D0(q2, m2) ρ(m2) dm2

. (10)

In the expression (10) denominator is full BW propagator (5) and the integration in numerator can be per-
formed directly at q2 > 0. As a result, we get:

ε(q2; M, Γ) =
1
π

ΓM
q2 −M2 − iΓM

[
1
2

ln
q4

M2(M2 + Γ2)
+ π

q2 −M2

ΓM
], (11)

where we used the approximation arctan(M/Γ) ≈ π/2 in the second term. From (11) it follows strong
q2 -dependence of the relative contribution ε(q2; M, Γ). In particular, at the peak range ε(M2; Γ, M) ≈
−iΓ2/2πM2, at q2 >> M2 it has asymptotic ε(q2)→ 1 and at q2 << M2 from (11) it follows:

ε(q2; M, Γ) =
Γ

πM
[
1
2

ln
M2(M2 + Γ2)

q4 + π
M
Γ
], (12)

So, at small q2 the value ε(q2; M, Γ) is large and we can not cut off the negative component. At q2 < 0, an
upper integral in (10) can be calculated with the help of the integration rule (4) and calculation gives the
same effect.

3 Propagator of vector unstable particles

To define the structure of vector propagator, we assume that the spectral function ρ(m2) is the same as for
a scalar UP. Using the standard vector propagator for a free vector particle with a fixed mass, we get:

Dµν(q) =
1
π

+∞∫
−∞

−gµν + qµqν/(m2 − iε)
q2 −m2 + iε

MΓ dm2

[m2 −M2]2 + M2Γ2 . (13)

In the term qµqν/(m2− iε) we use the same rule of going around pole as in the denominator q2− (m2− iε).
The integral in Eq. (13) can be evaluated with the help of the formula (4), however, it is easier to do it using
the method of contour integration. The integration along the lower contour C− gives:

Dµν(q) = −
MΓ
π

∮
C−

(gµν − qµqν/(z− iε)) dz
(z− z−)(z− z+)(z− z0)

= − 2iMΓ
gµν − qµqν/(z−)

(z− − z+)(z− − z0)
=
−gµν + qµqν/(M2 − iMΓ)

q2 −M2 + iMΓ
. (14)

One can check that the integration along the upper contour C+ or with the help of the formula (5) leads to
the same result. The expression (14) coincides with the well-known expression for modified BW propagator
(1) which satisfies to electromagnetic Ward identity [1].

We should note, that both the scalar and vector propagators of UP can be represented in the form with
universal complex mass squared:

D(q) =
1

q2 −M2
P

; Dµν(q) =
−gµν + qµqν/M2

P
q2 −M2

P
, (15)
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where the structure M2
P = M2 − iMΓ usually is called as complex-mass definition. This definition is the

base element of the so-called complex-mass scheme of calculation [4,5]. The dressed propagator of a bosonic
UP can be formally obtained from the “free" propagator by the substitution m2 − iε −→ M2 − iMΓ. So, the
infinitesimal value ε, which formally defines the rule of going around pole in bare propagator, is an analog
of the infinitesimal width of the intermediate state in the framework of the model approach.

4 Propagator of spinor unstable particles

The propagator of a free fermion can be represented in two equivalent forms:

D̂(q) =
1

q̂−m + iε
=

q̂ + m− iε
q2 − (m− iε)2 . (16)

According to the above mentioned formal rule for constructing the dressed propagator, we have to make
the substitution m − iε → M − iΓ/2. Then, the dressed propagator of the spinor UP takes the form (1).
Now, we show that the expression (1) can be derived in a more systematic way with the help of the integral
representation:

D̂(q) =
∫ q̂ + m− iε

q2 − (m− iε)2 ρ(m) dm , (17)

where the integration range is not defined yet. The spectral function ρ(m) for fermions differs from the
bosonic one, because of another parametrization M(q) = M0 + <Σ(q) and Γ(q) = =Σ(q). The spectral
function for the case of the spinor UP is as follows:

ρ(m) =
1
π

Γ/2
[m−M]2 + Γ2/4

=
1
π

Γ/2
(m−M−)(m−M+)

, (18)

where M± = M ± iΓ/2. The main difference between boson and spinor cases is a presence of the linear
term m instead the quadratic one m2, which is defined at the whole real axis m2 ∈ (−∞,+∞). Here,
we consider a straightforward relation between the bosonic parameter range and spinor one. Thus, we
have two intervals, naimly (+i∞, i0; 0, ∞) and (−i∞, i0; 0, ∞) for the value m. In the method of contour
integration the signs ± correspond to integration along the contours C±, which enclose the first or fourth
quadrants of the complex plane. Then, from Eqs. (17) and (18) it follows:

D̂±(q) = ±
Γ

2π

∫
C±

(q̂ + z) dz
(z2 − z2

0)(z− z−)(z− z+)
, (19)

where z2
0 = q2 + iε, z± = M± and C± are the above described contours. By simple and straightforward

calculations we can see that the correct result follows from the integration along the contour C−, while the
integration along the C+ leads to non-physical result. This is likely caused by the presence of the branch
point z2

0 in the first quadrant. From Eq. (19) it follows:

D̂−(q) =−
Γ

2π

∫
C−

dz
z− z−

q̂ + z
(z2 − z2

0)(z− z+)

=− iΓ(q)
q̂ + z−

(z2
− − z2

0)(z− − z+)
=

q̂ + M− iΓ/2
q2 − (M− iΓ/2)2 . (20)

The last expression in (20) coincides with the corresponding expression in (1). The spinor complex mass
definition differs from the bosonic one, however, it has similar pole-type complex structure. Then, the pole
definition of the mass and width of the spinor UP is MP = Mρ − iΓρ/2 in our consideration.
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5 Summary

In this work, we have analyzed a special case of the spectral function which follows from the matching the
model and standard scalar BW propagator. This function contains the parameters M, Γ and mass variable
m2 prove to be in the interval (−∞,+∞). So, the variable m can be imaginary, however, such states have no
explicit physical content. It was shown that contribution of the negative component to the full propagator is
significant for the deep virtual states. In the framework of this approach we get vector and spinor propaga-
tors with the well-known modified BW structure. This structure provides the gauge invariant description
and explicitely leads to the complex-mass definition. The q-dependence of the UP mass and width can be
introduced into the function ρ(m2; Γ(q), M(q)) without the loss of the generality.
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