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We found a minimal and a comprehensive set of directly measurable quantities defining the most general two-
Higgs-doublet model (2HDM), we call these quantities observables. The potential parameters of the model are
expressed explicitly via these observables (plus nonphysical parameters which are similar to gauge parame-
ters). The model with arbitrary values of these observables can, in principle, be realized (up to general enough
limitations). Our results open the door for the study of Higgs models in terms of measurable quantities only.
The experimental limitations can be implemented here directly, without complex, often model-dependent,
analysis of the Lagrangian coefficients.

The principal opportunity to determine all parameters of the 2HDM from the (future) data meets strong prac-

tical limitation. It is the problem for a very long time.

1 Introduction

The essential part of this report is based on results [1].

The recent discovery of a Higgs-like particle with M ≈ 125 GeV at the LHC [2] hints that the sponta-
neous electroweak symmetry breaking is most probably realized by the Higgs mechanism. The mini-
mal realization of the Higgs mechanism introduces a single scalar isodoublet φ with the Higgs potential
VH = −m2(φ†φ)/2 + λ(φ†φ)2/2. This model is usually called “the Standard Model” (SM). The experi-
mental results favor the realization of that minimal scenario [3] (SM-like scenario [4], or SM alignment
limit [5]). Nevertheless, many variants of extended Higgs models are not ruled out.

The two Higgs doublet model (2HDM) presents the simplest extension of the standard Higgs mecha-
nism [6]. This name unites a group of models in which the standard Higgs doublet is supplemented
by an extra hypercharge-one doublet. It offers a number of phenomenological scenarios with different
physical content realized in different regions of the model parameter space (see e.g. in [7]). After elec-
troweak symmetry breaking the 2HDM contains three neutral Higgs bosons ha ≡ h1,2,3 and charged
Higgs boson H± with masses Ma, M± respectively.

In the SM, parameters of the Higgs potential can be treated as measurable quantities. These are the
mass of the Higgs boson Mh and the Higgs self-coupling parameter λ = M2

h/v2, where v = 246 GeV
is the vacuum expectation value of the Higgs field. Physical problems in this model can be equally
discussed in terms of parameters of the potential or in terms of these observables.

The 2HDM contains two fields with identical quantum numbers. Therefore, its description in terms of
original fields or in terms of their linear superpositions are equivalent. This freedom makes clear that the
study in terms of the Lagrangian may be likened to discussion of electrodynamical effects in a certain
gauge defined by some particular gauge-fixing conditions. The discussion of the 2HDM in terms of only
well-measurable quantities seems preferable. Here we present solution of this problem [1].

• The 2HDM describes a system of two scalar isospinor fields φ1, φ2 with hypercharge Y = 1. The most
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1 INTRODUCTION

general form of the 2HDM potential is
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Its coefficients are restricted by the requirement that the potential be positive at large quasiclassical
values of φi (positivity constraints).

• The model contains two doublets of fields with identical quantum numbers. Therefore, it can be
described either in terms of the original fields φ1, φ2, which enter (1), or in terms of fields φ′1, φ′2, which
are obtained from φk by a global unitary reparameterization (RPA) transformation F̂ of the form(

φ′1
φ′2

)
= F̂gen(θ, τ, ρ)

(
φ1
φ2

)
, F̂gen = e−iρ0

(
cos θ eiρ/2 sin θ ei(τ−ρ/2)

− sin θ e−i(τ−ρ/2) cos θ e−iρ/2

)
. (2)

This transformation induces a transformation of the parameters of the Lagrangian λi → λ′i in such a
way that the new Lagrangian, written in fields φ′i , describes the same physical content. We refer to these
different choices as different RPa bases.

Transformation (2) is parameterized by angles θ, ρ, τ and ρ0. The parameter ρ0 describes an overall
phase transformation of the fields, and since it does not affect the parameters of the potential, we do not
consider this degree of freedom.

In the potential (1), parameters λ1−4, m2
11 and m2

22 are real while λ5−7, m2
12 are generally complex. So it

takes 14 real quantities to fully define the scalar part of the 2HDM. Since the three remaining parameters
of the RPa transformation cannot influence description of physical phenomena, the actual number of
physically relevant parameters of the potential is 14− 3 = 11.

• Extrema of the potential satisfy the stationarity equations ∂V/∂φi|φ1=〈φ1〉,φ2=〈φ2〉 = 0 (i = 1, 2). The
most general solution that describes the SU(2)×U(1)Y → U(1)EM symmetry breaking is expressed via
two positive numbers vi and the relative phase factor eiξ as:

〈φ1〉 =
1√
2

(
0
v1

)
, 〈φ2〉 =

1√
2

(
0

v2eiξ

)
, v1 = v cos β, v2 = v sin β, v =

√
v2

1 + v2
2 . (3)

The ground state of potential (the vacuum) is the extremum with the lowest energy, and its vacuum
expectation value (v.e.v.) is v = 246 GeV.
The fields φi are then decomposed into their v.e.v.’s and the quantized component fields, their linear
combinations describe Goldstone modes G±, G0, charged Higgses H± with mass M± and neutral Hig-
gses h1,2,3 with masses M1,2,3

• Relative couplings. We use the relative couplings for each neutral Higgs boson ha:

χP
a =

gP
a

gP
SM

, χ±a =
g(H+H−ha)

2M2
±/v

, χH+W−
a =

g(H+W−ha)

MW/v
. (4)

The quantities χP
a are the ratios of the couplings of ha with the fundamental particles

P = V (W, Z), q = t, b, ..., ` = τ, ... to the corresponding couplings for the would be SM Higgs boson
with Mh = Ma. The other relative couplings describe interaction of ha with charged Higgs boson H±b .

The quantity χ±b
a describes interaction H+

b H−b ha, the quantity χ
H+

b W−
a describes off-diagonal interaction

H±b W∓ha. (Below we omit the adjective "relative".)

The neutrals ha generally have no definite CP parity. Couplings χV
a and χ±b

a are real due to Hermiticity
of Lagrangian, while other couplings are generally complex. The Re(χ f

a ) and Im(χ
f
a ) are responsible for

the interaction of fermion f with CP-even and CP-odd components of ha respectively.
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3 QUADRATIC TERMS OF POTENTIAL. FIRST SUBSET OF OBSERVABLES

2 Higgs basis. Basic equations

Any RPa basis can be used for solving physical problems. Some of them are more suitable than others
when solving specific problems. In particular, when the system possesses an additional symmetry, the
preferable RPa basis is the one in which this symmetry is made obvious.

We find it useful here to analyze the model with known vacuum (the ground state of the potential) using
the basis with v2 = 0. This basis is called the Higgs (or Georgi) basis [8]. This basis is obtained from any
given basis with known v.e.v.’s by transformation (2) with(

Φ1
Φ2

)
= F̂HB

(
φ1
φ2

)
, F̂HB = F̂gen(θ=β, τ=ρ−ξ). (5)

The phase factor e±iρ/2 represents the remaining rephasing (RPh) freedom in the choice of the Higgs
basis that is, independence of the physical picture from the choice of relative phase φi, the RPh phase.

Vise versa, any form of the potential can be obtained from the Higgs basis form with the transformation,
F̂−1

HB = F̂gen(θ = −β, τ = ρ + ξ) with ρ → −ρ, ρ0 → −ρ0. Again, we do not fix in this definition the
RPh phase ρ and the irrelevant parameter ρ0.

The potential obtained has the same form as (1). To distinguish its parameters in the Higgs basis from a
generic basis, we use the capital letters Λ, Φ for parameters and fields. Using the extremum conditions,
one can rewrite the potential in the simple form [9]
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(6)

In the Higgs basis the decomposition of fields around v.e.v. has form

Φ1 =

 G+

v + η1 + iG0
√

2

 , Φ2 =

 H+

η2 + iη3√
2

 . (7)

To arrive at the description in terms of physically observable fields, one should start by substituting
these expressions into the potential (6). Also, by choosing the unitarity gauge for the gauge fields, we
omit the Goldstone modes Ga from now on.

As a result, the potential (6) takes the form in which coefficients are expressed via parameters of (6) (here
and below, the usual convention of summation over repeated indices is adopted):

V = M2
± H+H− +

Mij

2
ηiηj + vTi H+H−ηi + vTijk ηiηjηk

+CH+H−H+H− +
Bij

2
H+H−ηiηj + Qijklηiηjηkηl .

(8)

3 Quadratic terms of potential. First subset of observables

In Eq. (8), the coefficients Mij form the neutral scalar mass matrix (here N = M2
±/v2 + Λ4):

Mij =v2


Λ1 Re Λ6 −Im Λ6

Re Λ6
N + ReΛ5

2
−Im Λ5/2

−Im Λ6 −Im Λ5/2
N − ReΛ5

2

 . (9)

The physical neutral Higgs states ha are such superpositions of fields ηi that diagonalize this matrix:

ha = Ri
aηi , ηi = Ra

i ha ; Mijηiηj/2 = ∑a M2
ah2

a/2, Mij = Ra
i Ra

j M2
a . (10)
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4 OTHER TERMS OF POTENTIAL. SECOND SUBSET OF OBSERVABLES

The mixing matrix Ra
i is a real-valued orthogonal matrix determined by the parameters of the mass ma-

trix. It can be parameterized with three Euler angles. One of them is responsible for rephasing transfor-
mation of fields, i.e. it is irrelevant. The overall sign of this matrix is insignificant, we fix R1

1 > 0.

The trace of the mass matrix is invariant under transformations (10). Therefore we obtain a sum rule
v2 (Λ1 + Λ4) = ∑a M2

a −M2
±.

One of the advantages of the Higgs basis as compared to other RPa bases is the fact that elements of the
rotation matrix are directly related to the couplings (4), which are, in principle, measurable:

χV
a = Ra

1, χH+W−
a ≡

(
χH−W+

a

)∗
= Ra

2 + iRa
3. (11)

It can be seen easily after writing the kinetic term of the Higgs Lagrangian with definitions (7) and
(10). The absolute values of the real quantities χV

a are directly measurable in the decays ha → WW (or
W-fusion process), etc.

The phases of quantities χH+W−
a , i.e. the ratios Ra

3/Ra
2, cannot be fixed because of the rephasing freedom

of potential in the Higgs basis . Their relative phases for different ha are determined unambiguously.
We fix the RPh basis by the condition R2

3 = 0.

The orthogonality of the mixing matrix means that its elements obey a set of relations ∑
i
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This orthogonality allows to express all elements Ra
i via couplings of different Higgs neutrals ha to gauge

bosons χV
a (ρ is arbitrary phase, determined RPh freedom):
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1 0 0
0 cos ρ sin ρ
0 − sin ρ cos ρ

 (13)

with limitation, given by the first sum rule (12).

Finally, one can read (9) as expressions of some Λ’s via elements of the mass matrix and then, with the
aid of (10), express them via the masses of Higgs bosons and their couplings to gauge bosons:

v2Λ1 = ∑
a
(χV

a )
2M2

a ; v2Λ4 = ∑
a

M2
a−M2

±−v2Λ1;

v2Λ∗5 = ∑
a
(χH+W−

a )2M2
a ; v2Λ∗6 = ∑

a
χV

a χH+W−
a M2

a .
(14)

These equations describe parameters Λ1, Λ4, Λ5, Λ6 of Lagrangian via observables of the first subset,
i.e. masses of all Higgs bosons M1,2,3M1,2,3M1,2,3, M±M±M±, vacuum expectation value of Higgs field v = 246v = 246v = 246 GeV
and the couplings χV

aχV
aχV
a of any two (of three) chosen neutrals to the gauge bosons – 7 quantities. Below

we assume that h1 is the discovered Higgs boson with M1 ≈ 125 GeV. The final equations also contain
the couplings χH+W−

a , expressed via χV
a with the aid of Eq. (13). This subset determines explicitly all

quadratic (mass) terms of potential (6).

4 Other terms of potential. Second subset of observables

The Higgs boson masses and couplings to the gauge bosons do not depend on Λ2, Λ3, Λ7. In turn, these
parameters are necessary to determine triple and quartic Higgs boson vertices. The triple and quartic
Higgs vertices of the potential (6) can be determined completely only if one supplements the parameters
of the first subset with additional information. In turn, to form the second subset, one needs to use triple
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6 DISCUSSION

and quartic Higgs self-interactions. For this goal we use three triple couplings H+H−haH+H−haH+H−ha (quantities χ±aχ±aχ±a )
and one quartic coupling g(H+H−H+H−)g(H+H−H+H−)g(H+H−H+H−) – 4 quantities. The analysis is simple but cumbersome.

The parameters of the first subset plus three couplings χ±a determine all triple Higgs couplings. The
coefficients Λ3, Λ7 of the Lagrangian are expressed simply via these three couplings and observables of
the first subset.

Λ3 = (2M2
±/v2)∑

a
χV

a χ±a ; Λ∗7 = (2M2
±/v2)∑

a
χH−W+

a χ±a . (15)

The description of quartic interactions of Higgs particles demands adding one more observable

Λ2 = 2g(H+H−H+H−) . (16)

• Certainly, the second subset of observables can be constructed with other triple and quartic couplings.

Using processes involving charged Higgses looks preferable for two reasons. First, with charged Hig-
gses, this procedure requires the fewest calculations, improving accuracy and reducing uncertainties.
Second, the amplitudes of the processes e+e− → H+H−ha, γγ → H+H−ha,
e+e− → H+H−H+H−, γγ → H+H−H+H− at ILC/CLIC [10] are directly proportional to the cor-
responding couplings, without any nonrelevant diagrams interfering.

• The obtained equations for parameters of the Lagrangian in the Higgs basis contain one irrelevant
parameter: the RPh phase ρ related to a rephasing freedom in the Higgs basis . In order to switch to
another RPa basis, which could be more useful for some special reasons, one should use two parameters
tan β and ξ, which are determined by the RPa basis choice. Once these parameters are determined
from problem-specific conditions, the transition to this RPa basis is performed with the aid of the back
rotation F̂−1

HB (5). The final equations for parameters λi, m2
ij are constructed from measurable quantities

discussed above and RPa basis-choice parameters β, ρ, ξ.

5 Notes about renormalization scheme

The standard calculation of the radiative corrections (RC) in the model is based on the parameters of
Lagrangian which are RPa dependent. This RPa ambiguity can be removed, for example, by using the
renormalization procedure fixing parameters of the basic set. In the modern approach the calculation of
any physical effect should be supplemented by calculation of renormalized values of masses and other
parameters of basic set which should be taken into account in the data analysis. The development of
such scheme looks important problem.

6 Discussion

•We have found the minimal complete set of measurable quantities (named observables) that determines
all parameters of the 2HDM Lagrangian – the basic set of observables.

• The observables of the basic set are measurable quantities, independent of each other. The models
with arbitrary values of these observable parameters can, in principle, be realized, provided that the
positivity constraints are satisfied and the couplings χV

a are not too large, in order not to violate the sum
rule (12). In some special variants of the 2HDM, additional relations between these parameters may
appear (for example, in the CP conserving case χV

3 = χ±3 = 0).

Our results open the door for the study of Higgs models in terms of measurable quantities alone. It
allows to remove from the data analysis the widely spread intermediate stages with complex, often
model-dependent, analysis of coefficients of the Lagrangian.

• Possible strong interaction in the Higgs sector. The fact that free parameters of the potential naturally
fall into three very distinct categories offers a new opportunity that was absent in the SM. Before the
Higgs discovery, the large coupling constant λ was, in principle, possible within the SM. In this case, the
Higgs boson would be very heavy and wide, and it could not be seen as a separate particle. Instead, its
dynamics would be governed by the strong interaction in the Higgs sector, which would manifest itself
in the form of resonances in the WLWL, WLZL, ZLZL scattering in the 1− 2 TeV energy range. In the SM
this opportunity is closed by the discovery of the Higgs boson with M ≈ 125 GeV.

5



REFERENCES REFERENCES

Our analysis shows that, within the 2HDM, the reasonably low values of all Higgs masses are well
compatible with large Λ3, |Λ7|, Λ2, i.e. with the strong interaction in the Higgs sector. A signal of
this feature can be observed in the multi-Higgs final states or (for Λ3, |Λ7|) in the anomalously large
two-photon width of some neutral Higgs boson. Moreover, this strong interaction can coexist even with
moderate values of triple Higgs couplings as it could be driven exclusively by the large value of a single
parameter Λ2.

• The principal possibility to determine all parameters of the 2HDM from the (future) data meets strong
practical limitations (which can be hidden in other approaches). This will remain a problem for a very
long time.

Indeed, the modern data on the Higgs boson couplings, the analysis of many particular models (see,
e.g., [11]), and the using of sum rules (12) allow us to conclude that the discovery of new Higgs bosons
h2,3, H± is a difficult problem for the LHC and e+e− colliders [12].

If these h2,3 are discovered, the inaccuracies in the measuring of their masses and couplings are not
expected to be small.

The measuring of triple and quartic interactions of Higgs bosons looks more difficult problem. So it is
natural to expect that these measurements will be made later and with bigger inaccuracy.

The general limitations for the model, similar to the positivity constraint, contain parameters of the first
and second subsets simultaneously. Thus, there are few chances that such restrictions can be verified in
the near future.
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